
RSA BSAFE®

Cert-C
Basic Developer’s Guide
Version 2.7

Certificate management components for C

Contact Information
See our Web sites for regional Customer Support telephone and fax numbers.

Trademarks
ACE/Agent, ACE/Server, Because Knowledge is Security, BSAFE, ClearTrust, JSAFE, Keon,
RC2, RC4, RC5, RSA, the RSA logo, RSA Security, SecurCare, SecurID, Smart Rules, The Most
Trusted Name in e-Security, Virtual Business Units, and WebID are registered trademarks, and
RSA Secured, the RSA Secured logo, SecurWorld, and Transaction Authority are trademarks of
RSA Security Inc. in the U.S. and/or other countries. All other trademarks mentioned herein are
the property of their respective owners.

License Agreement
This software and the associated documentation are proprietary and confidential to RSA
Security, are furnished under license and may be used and copied only in accordance with the
terms of such license and with the inclusion of the copyright below. This software and any
copies thereof may not be provided or otherwise made available to any other person.
Neither this software nor any copies thereof may be provided to or otherwise made available to
any third party. No title to or ownership of the software or any intellectual property rights
thereto is hereby transferred. Any unauthorized use or reproduction of this software may be
subject to civil and/or criminal liability.
This software is subject to change without notice and should not be construed as a commitment
by RSA Security.

Third Party Licenses
This product may include software developed by parties other than RSA Security. The text of
the license agreements applicable to third party software in this product may be viewed in the
thirdpartylicense.pdf file.

Note on Encryption Technologies
This product may contain encryption technology. Many countries prohibit or restrict the use,
import or export of encryption technologies and current use, import and export regulations
should be followed when exporting this product.

Distribution
Limit distribution of this document to trusted personnel.

RSA Security Notice
The RC5® Block Encryption Algorithm With Data-Dependent Rotations is protected by U.S.
Patent #5,724,428 and #5,835,600.
Compaq MultiPrime™ technology is protected by U.S. Patent #5,848,159 and is the subject of
patent applications in other countries.
This product includes patented technology licensed from Entrust Technologies Inc. (US Patent#
5,699,431).

RSA Security Inc.

www.rsasecurity.com

RSA Security Ireland Limited

www.rsasecurity.ie

© 2003 RSA Security Inc. All rights reserved. 001-046014-270-001-000 (SAP P/N: 3904)
First printing: March, 2003

http://www.rsasecurity.com
http://www.rsasecurity.ie

Contents
Preface 11
How This Book Is Organized . 12
Cert-C Documentation Redesign . 14
Cert-C Documentation Map . 15

Core Documentation . 15
Additional Documentation. 16

How to Contact RSA Security . 17
RSA Security Web Site . 17
Getting Support and Service . 17

SecurCare® Online . 17
Technical Support Information . 17

Chapter 1 Introduction 19
What Is RSA BSAFE Cert-C? . 19

The Cert-C Components. 20

Cert-C Features . 21
New Features in Cert-C 2.7 . 23
Cert-C Architecture . 24

Your Application. 25
Cert-C API. 25

Cert-C Context. 26
Cert-C Initialization . 26

Cert-C Service Providers . 26
Service-Provider Initialization. 27
Service-Provider Registering . 28
Service-Provider Unregistering. 29
Service-Provider Binding. 29
Service Provider Unbinding. 29
Surrender Context. 30

Cert-C SPI. 30
3

Chapter 2 RSA Security Concepts 31
Secret-Key Cryptography . 31
Public-Key Cryptography. 31
Key Management . 32
Digital Signatures . 33
Digital Certificates . 34
Extension Fields . 35

CRL Distribution Points . 36
Attribute Fields . 36
Digital Envelopes . 36
Certificate Authority . 37
Certificate Chaining . 38

Push Model Versus Pull Model . 39
Trusted Root . 39
Certificate Revocation List . 39

Protocol Considerations . 41
What Are the X.509 Standards?. 41
PKIX Profiles . 42
PKCS Messaging. 42
PKCS #7 and PKCS #10 Message Formats . 43
PKCS #8 Private-Key Syntax . 43
PKCS #11 Cryptographic Token Interface . 44
PKCS #12 Public/Private-Key Importing and Exporting . 44
OCSP Certificate Status . 44
SCEP Certificate Request . 44
CRS Certificate Request . 45
CMP Certificate Management . 45
ASN.1 BER and DER Encoding . 46
Character Sets . 47

Chapter 3 Cert-C Setup 49
Cert-C CD-ROM Contents. 50
Installing Cert-C . 51
Compatibility with BCERT 1.0x . 51
Customizing the UNIX Install Location . 51

UNIX Platform-Specific Build Strings . 53

Using the Crypto-C Libraries . 54
Third-Party Source Code . 54
4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

CodeBase . 54
LDAP Usage . 55

Building and Deploying Cert-C . 56
Win32. 56
UNIX and GNU-Linux . 56
Solaris . 56

Sample Programs . 57
Building Samples on Win32 . 57
Utility Routines . 58

Chapter 4 Getting Started 59
Cert-C Objects . 60
Calling the Cert-C API . 63
Cert-C Model . 64

Producing Information . 64
Reading Information . 64

Cert-C Programming Standards . 66
Memory Management . 66
Cert-C Context . 66
Clean Up. 66
Header Files . 67

Sample Code Conventions . 68
Crypto-C API . 69
Deprecated Functions and Structures . 70

Chapter 5 Cert-C Context and Services 73
Cert-C Handles . 74

Using the CERTC_CTX and SERVICE_HANDLER Handles . 74
Initializing the Cert-C Context. 75
Registering a Service Provider After Cert-C Initialization . 77
Unregistering a Service Provider . 79

Using the SERVICE Handle . 79
Binding a Service . 80
Binding More Than One Service. 80
Unbinding a Service . 81

Using the Database Iterator Handle . 81
Using the STREAM Handle . 82
C o n t e n t s 5

Using the Extension Handler . 82
Using the List Object Entry Handler . 82

Cert-C Services. 84
Surrender Context . 84

Registering a Surrender Context . 84
Cert-C Service Providers . 85

System . 85
Text Surrender . 85
Status Log . 86
Stream . 86
Database . 86
Cryptographic. 87
Certificate Path Processing . 88
Certificate Revocation Status . 88
PKI Certificate Management . 88

Chapter 6 Using the List Object 91
List Object . 91

List-Object Entry Handler . 92
List-Object Functions . 92

Creating and Enumerating a List of Objects . 94
Creating a List of Certificates. 94
Enumerating a List of Objects. 95

Creating and Enumerating a List of Structures . 96
Creating a List of ITEMs . 96
Enumerating a List of ITEMs. 97

Creating and Enumerating a List of User-Defined Elements 97

Chapter 7 Using the Name and Attributes Objects 101
Name Object . 102

Name-Object Functions . 103
AVA-List Functions . 104

Attribute Types and Constraints . 104

Creating a Name Object. 105
Attributes Object . 112

Attributes-Object Functions . 112
Attribute Types and Constraints . 115

Creating an Attributes Object . 115
6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 8 Creating a Certificate Request 119
PKCS #10 Certificate Request . 120

PKCS #10 Object . 120
PKCS #10-Object Functions . 121

Creating a PKCS #10 Certificate Request . 123

PKI Certificate Request Message . 128

Chapter 9 Creating a PKI Message 129
PKI Message Object . 130

Deprecated PKI Messaging APIs and Structures . 131
PKI Message Object Functions . 132

Creating a PKI Request Message . 137
PKI Certificate-Request Object . 149

PKI Certificate-Request Object Functions . 149

PKI Certificate-Response Object . 150
PKI Certificate-Response Object Functions . 150

PKI Certificate-Confirmation Request Object . 152
PKI Certificate-Confirmation Request Object Functions . 152

PKI Certificate-Confirmation Response Object . 154
PKI Certificate-Confirmation Response Object Functions . 154

PKI Key-Update Request Object. 155
PKI Key-Update Request Object Functions . 155

PKI Key-Update Response Object . 156
PKI Key-Update Response Object Functions . 156

PKI Revocation Request Object . 157
PKI Revocation Request Object Functions. 157

PKI Revocation Response Object . 158
PKI Revocation Response Object Functions . 158

PKI Error-Message Object . 160
PKI Error-Message Object Functions . 160

Certificate-Template Object . 162
PKI Certificate-Template Object Functions . 162

PKI Status-Information Object . 165
PKI Status-Information Object Functions. 165
C o n t e n t s 7

Chapter 10 Creating an X.509 Certificate 167
Certificate Object . 168

Certificate-Object Functions . 168

Creating a Certificate Object . 169
Fulfilling the PKCS #10 Certificate Request . 174
Manipulating Certificate Information . 182

Chapter 11 Verifying Certificates and CRLs 187
Trusted Root . 188
Certificate Chaining . 189
Verify a Certificate or CRL Functions . 190

Service Providers . 191

Validating a Certificate Path . 193
Verifying a Signature . 200

Verifying a Signature on a Certificate . 200
Verifying a Signature on a CRL . 200

Chapter 12 Storing and Retrieving Certificates, CRLs, and Private
Keys 201
Cert-C Database APIs. 202
Cert-C Database Service Providers . 207
Storing and Retrieving Certificates, CRLs, and Private Keys. 209

Storing a Certificate, CRL, or Private Key . 210
Retrieving a Certificate, CRL, or Private Key . 212

Chapter 13 Retrieving Certificate Information 215
Retrieving Name-Object Information . 216
Retrieving Attributes-Object Information . 219
Retrieving Extensions-Object Information . 223

Chapter 14 CRL and CRL Entries 227
CRL Object . 229

CRL-Object Functions . 229

Creating a CRL Object . 231
8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Reading a CRL Object. 237
CRL Entries Object . 241

CRL-Entries Object Functions. 241

Adding a CRL Entry to a CRL Object. 243
Deleting a CRL Entry from a CRL Object . 247
Reading a CRL-Entries Object . 250

Chapter 15 Extensions 253
X.509 v3 Certificate Extensions . 253
Extensions Object. 254

Extensions-Object Functions . 255

Creating an Extensions Object . 257
Extensions Information in an Attributes Object. 264

Putting Extensions in an Attributes Object . 264
Reading Extensions in an Attributes Object . 267

User-Defined Extensions . 270
Building an Extension Handler. 272

Writing the AllocAndCopy Routine. 273
Writing the Destructor Routine . 275
Writing the GetEncodedValue Routine. 275
Writing the SetEncodedValue Routine . 277

Registering a User-Defined Extension. 279
Building a Cert-C Context to Register a User-Defined Extension 279
Registering a User-Defined Extension . 279

Using a User-Defined Extension . 281

The Unknown Extension. 283
The Unknown Critical Extension . 283

Overriding the Extension Handler . 285

Appendix A Using BSAFE Crypto-C 287
Crypto-C Model . 287
Key Object . 289
Generating an RSA Key Pair . 290
Getting Key Information Out of a Key Object . 293
Setting a Key Object . 294
C o n t e n t s 9

Appendix B BCERT Compatibility 295
BCERT Backward Compatibility . 296

API Modifications/Updates . 297

An Example: bcdemo . 304
User's Guide for bcdemo . 306

Introduction . 306
Running the Demo . 306

Programmer's Guide for bcdemo . 313

Appendix C References 317
ITU Recommendations . 318
PKCS . 319
PKIX . 320
UTF-8 . 321
SCEP . 322

Index 323
1 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Preface
Dear Cert-C Developer,

Congratulations on your purchase of RSA BSAFE® Cert-C 2.7 (Cert-C), the software
development toolkit (SDK) that enables you to quickly and efficiently integrate
Public-Key Infrastructure components into your applications. This SDK enables you
to develop certificate management engines for a wide range of purposes, including
electronic commerce, enterprise security, and certificate issuing. Cert-C is built on top
of RSA Security’s cryptographic engine: RSA BSAFE Crypto-C.

Cert-C is written in C and is intended to be completely portable. It is available on a
number of platforms and can be ported to most platforms with a minimum of effort.
Cert-C is an SDK, not an application. It is intended to be integrated into your
application. Therefore, you have a modest amount of work ahead of you. We have
tried to make this task as clear as possible without constraining your alternatives. This
RSA BSAFE Cert-C Basic Developer’s Guide, with its examples, is the best place to start.

Please feel free to share with us any suggestions you have, bugs you find, or
improvements you would suggest for the next version of the Basic Developer’s Guide.
E-mail your comments to bsafeuserdocs@rsasecurity.com. Any comments will help
future Cert-C application developers.

Thanks, and welcome to the RSA Security family.

Sincerely,

The RSA BSAFE Cert-C Development Team, RSA Security.
11

How This Book Is Organized
How This Book Is Organized
This book is organized into the following chapters and appendixes:

• Chapter 1, “Introduction,” includes an overview of the Cert-C architecture.
• Chapter 2, “RSA Security Concepts,” introduces some security protocols and PKI

concepts.
• Chapter 3, “Cert-C Setup,” provides installation, build, and deployment

information.
• Chapter 4, “Getting Started,” introduces the Cert-C objects and outlines Cert-C

programmatic information you need to know before you start developing an
application that uses Cert-C.

• Chapter 5, “Cert-C Context and Services,” explains how to initialize the Cert-C
context and the various Cert-C services.

• Chapter 6, “Using the List Object,” presents the list object and its APIs, and
provides examples to explain how to use the list object.

• Chapter 7, “Using the Name and Attributes Objects,” presents the name and
attributes objects, along with their respective APIs, and provides examples that
show you how to create a name object and an attributes object.

• Chapter 8, “Creating a Certificate Request,” discusses the PKCS #10 certificate
request and the PKI request message formats.

• Chapter 9, “Creating a PKI Message,” presents the PKI message object and the
various types of PKI request and response objects, and provides a general
example for creating a PKI message.

• Chapter 10, “Creating an X.509 Certificate,” introduces the certificate object, and
provides examples that show you how to build an X.509 certificate.

• Chapter 11, “Verifying Certificates and CRLs,” provides examples that show you
how to verify the signature on a certificate and a CRL.

• Chapter 12, “Storing and Retrieving Certificates, CRLs, and Private Keys,”
provides examples that show you how to store and retrieve a certificate, a key,
and a CRL.

• Chapter 13, “Retrieving Certificate Information,” provides examples that show
you how to retrieve information from a certificate object, an attributes object, and
an extensions object.

• Chapter 14, “CRL and CRL Entries,” discusses the CRL and CRL entries objects,
and explains how to create a CRL and CRL entries object.
1 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

How This Book Is Organized
• Chapter 15, “Extensions,” presents the extensions object and its APIs, and
provides examples that show you how to create an extensions object and
user-defined extensions.

• Appendix A, “Using BSAFE Crypto-C,” briefly explains how to use Crypto-C
functionality with Cert-C.

• Appendix B, “BCERT Compatibility,” discusses issues developers need to
consider when migrating BCERT applications to Cert-C.

• Appendix C, “References,” lists the standards to which the Cert-C SDK conforms.
P r e f a c e 13

Cert-C Documentation Redesign
Cert-C Documentation Redesign
In Cert-C 2.5, the documentation set was completely redesigned. The reference
information in now online, in HTML format, (the RSA BSAFE Cert-C API Reference),
there is a new Basic Developer’s Guide, as well as the existing RSA BSAFE Cert-C
Developer’s Guide, now called the RSA BSAFE Cert-C Advanced Developer’s Guide. The
old RSA BSAFE Cert-C Service Provider Manual is also online. It is included in the API
Reference.

The API Reference will increase your ease of use in developing your products. You can
look up a function’s usage while implementing Cert-C into your application. For
example, while programming, if you need to know more about a function, call up the
help file and access the function’s description and usage online. You can look up any
function by header file name or alphabetically from the global list. If you need to
know more about a particular structure that a function uses, then you simply click on
the structure name to navigate to the structure’s description.

The Basic Developer’s Guide is designed to get you using Cert-C with your application
faster than ever. It presents essential information, without overloading you with more
advanced topics.

The Advanced Developer’s Guide concentrates on more advanced topics and includes
more sophisticated examples and samples.
1 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Cert-C Documentation Map
Cert-C Documentation Map
This book is written for developers and independent software vendors who want to
use Cert-C to add Public-Key Infrastructure (PKI) client functionality to applications.

Core Documentation
All users of Cert-C need the following core documentation.

Basic Developer’s Guide
This book, the RSA BSAFE Cert-C Basic Developer’s Guide, introduces the Cert-C
architecture and background PKI concepts. It presents the essential information you
need to start integrating Cert-C with your application. It provides basic, step-by-step
examples to help you get started. It takes you through initializing the Cert-C context
and services, and shows you the basic steps for general certificate management tasks.
For example, how to build a certificate request, send a certificate request, or store a
certificate. This book is the best place for a developer to start working with Cert-C.

Advanced Developer’s Guide
The RSA BSAFE Cert-C Advanced Developer’s Guide, introduces more sophisticated
Cert-C functionality. It explains how to use advanced Cert-C PKI functions and
services, and provides example and sample code with tutorials.

API Reference
The RSA BSAFE Cert-C API Reference contains complete documentation for the Cert-C
API library, including certificate function calls. It describes the Cert-C API functions,
structures, types, parameters, and return values.

The API Reference also includes a “Service Provider” section. This section defines the
Cert-C service providers and their associated utility programs. Each instance of a
Cert-C service-provider type behaves in a specific manner to provide a specific
service.
P r e f a c e 15

Additional Documentation
Additional Documentation
Additional documentation helps advanced developers customize the Cert-C API and
build additional services.

Crypto-C Developer’s Guide & API Reference
The RSA BSAFE Crypto-C Developer’s Guide introduces the developer to RSA
Security’s cryptographic architecture and background concepts. It describes the basics
of encryption and decryption, the steps involved in choosing algorithms and keys,
message digesting, and random number generation.

The RSA BSAFE Crypto-C API Reference describes the Crypto-C API library in detail.

Readme
The readme-certc.txt file contains the very latest information about the Cert-C
product, and is located in the Cert-C2.7 folder. This information is limited to bugs that
were found close to software release time. See the Release Notes for more detailed
release information.

Release Notes
The certc_27_releasenotes.pdf file contains detailed information about this Cert-C
software release. It is located in the Cert-C2.7 folder and in the doc directory. It covers
known software bugs and their recommended workarounds, and other information
specific to this release. The very latest information can be found in the
readme-certc.txt file, located in the Cert-C2.7 folder.

Cert-C Installation Guide
The certc_27_install.pdf file contains all the information you need to install Cert-C,
and is located in the Cert-C2.7 folder. See chapter 3, “Cert-C Setup” on page 49 of this
book, the Basic Developer’s Guide, for information about how to customize and use the
Cert-C SDK.
1 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

How to Contact RSA Security
How to Contact RSA Security

RSA Security Web Site
You can visit the RSA Security Web site at www.rsasecurity.com. It contains the latest
RSA Security news, security bulletins, and information about coming events.

RSA BSAFE product information is available at www.rsasecurity.com/products/bsafe.

RSA Laboratories’ Cryptography FAQ can also be found at www.rsasecurity.com/
rsalabs/faq.

Getting Support and Service
You can get technical support as follows:

SecurCare® Online
www.rsasecurity.com/support/securcare

Technical Support Information
www.rsasecurity.com/support
P r e f a c e 17

1 8

Chapter 1

Introduction
What Is RSA BSAFE Cert-C?
The task of integrating Public-Key Infrastructure (PKI) security with server and
end-user applications can be a complex and lengthy process. The application
developer would need expertise in several areas, including X.509 certificate
management and cryptography. The RSA BSAFE Cert-C (Cert-C) SDK addresses this
complexity by providing a secure, ready-made certificate management engine and
cryptographic engine to the application developer. Cert-C enables the application
developer to add digital signature, certificate, and key-management functions to any
application secured with RSA Security products—quickly, easily, and with
confidence.

Cert-C is the state-of-the-art PKI API software library, written in C, that combines
private key, trust, and certificate databases to request, retrieve, verify, store, and
manage private keys and certificates for signing or encrypting messages.

Cert-C contains the cryptographic support necessary to generate certificate requests,
sign certificates, and create and distribute Certificate Revocation Lists (CRLs). Cert-C
is built upon the RSA BSAFE Crypto-C cryptographic engine.
19

The Cert-C Components
The Cert-C Components
Cert-C provides the following components:

• Cert-C core functionality—The internal Cert-C static library.
• Cert-C API—The interface between your application and the PKI functionality.
• Cert-C SPI—PKI functionality to create your own service provider.
• Cert-C Service Providers—RSA Security’s implementation of the Cert-C SPI.
• Cert-C Utilities—Specialized routines to help create, run, and test your PKI

applications.

In addition, Cert-C includes the Crypto-C cryptographic component.

• Crypto-C API—Cryptographic functionality to perform the underlying
cryptographic algorithms required by the public-key infrastructure.
2 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Cert-C Features
Cert-C Features
The Cert-C SDK provides the following certificate management features:

• Generate a public/private key pair, utilizing Crypto-C.
• Certify a public/private key pair and store the resulting digital certificate. This

functionality is implemented through the various Cert-C PKI service providers.
• Certificate management protocols—CRS, CMP, and SCEP.

- CRS—Certificate requests and responses to CAs that implement the CRS
protocol. This functionality is implemented through the Cert-C CRS PKI
service provider according to the VeriSign CRS Profile Specification, available
directly from VeriSign.

- CMP—Certificate requests and responses, certificate revocation, key archival,
and key update requesting to CAs that implement the CMP protocol. This
functionality is implemented through the Cert-C CMP PKI service provider
according to the profile outlined in RFC 2510 and RFC 2511 for CMP version 1
messages, and draft-ietf-pkix-rfc2510bis-06.txt and
draft-ietf-pkix-rfc2511bis-04.txt for CMP version 2 messages.

- SCEP—Certificate requests and responses to CAs that implement the Cisco
Systems' Simple Certificate Enrollment Protocol certificate request mechanism.
This functionality is implemented through the Cert-C SCEP PKI and Cert-C
SCEP Database service providers.

• Maintain a data store for private keys, personal digital certificates, digital
certificates belonging to others, and certificate revocation information. This
functionality is implemented through the various Cert-C database service
providers.

• Determine trust in the certificate authority (CA) or chain of CAs for a given
certificate. Includes PKIX support for policy mapping and CRL distribution
points and related extensions in path validation and certificate status checking.
This functionality is implemented through the Cert-C Certificate Path Processing
service provider according to the profiles outlined in X.509 v1, RFC 2459, and RFC
3280.

• Check certificate revocation status—CRL and OCSP.
- CRL—Certificate revocation status checking using certificate revocation lists.

This functionality is implemented through the Cert-C CRL Revocation Status
service provider.
C h a p t e r 1 I n t r o d u c t i o n 21

Cert-C Features
- OCSP—Online certificate revocation status checking against a responder that
implements the Online Certificate Status Protocol. This functionality is
implemented through the Cert-C OCSP Revocation Status service provider.

• Encrypt, decrypt, sign, and verify data, utilizing Crypto-C.
• Import keys and certificates from other sources, according to the X.509, PKCS #7,

PKCS #8, PKCS #11, and PKCS #12 standards.
• Export private keys and certificates to other sources, according to X.509, PKCS #7,

PKCS #8, PKCS #11, and PKCS #12 standards.
• PKCS #11—Authenticated read-write access to certificates and private keys on

PKCS #11 tokens, and the ability to perform cryptographic operations with those
keys. This functionality is implemented through the Cert-C PKCS #11 Database
and Cert-C Default Cryptographic service providers.

You can create applications, using Cert-C, that automatically and seamlessly
interoperate with multiple existing PKI products available in the market today,
including RSA Keon® Certificate Authority and VeriSign’s OnSite certificate service.
Cert-C takes a standards-based approach, which minimizes the effort needed to write
applications for each PKI that needs to be supported. Cert-C supports PKCS #7, #8,
#10, #11, and #12, LDAP, X.509, and the following PKIX standards: OCSP, SCEP,
CRMF, CMP, and CRS.

Cert-C provides PKI functionality to your application through its application
programming interface (API), which interfaces between your application and the
internal Cert-C library or a service provider. The API enables your application to
select a Cert-C service provider, a third-party service provider, or your own
custom-built service provider. Cert-C also includes a Service Provider Interface (SPI),
which enables you to create your own custom-built service provider.
2 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

New Features in Cert-C 2.7
New Features in Cert-C 2.7
RSA Security has added some new features to the Cert-C SDK. As always, RSA
Security has developed these features according to industry standards so that you do
not have to redevelop your applications when you decide to interoperate with a
different PKI. The following is a list of the new features included in the Cert-C 2.7
SDK:

• Additional messaging objects and APIs for streaming PKCS #7 Data and
EnvelopedData. These objects and APIs are documented in cmsobj.h. They can be
used to stream PKCS #7 message input and output and to minimize memory use.
An additional sample has also been provided to demonstrate this functionality.

• Performance enhancements to certificate path building and validation providers,
including new APIs in certlist.h for adding certificate and CRL objects to
LIST_OBJs without the overhead of making deep copies of the added objects.

• Incorporation of RSA BSAFE Crypto-C 6.1 to provide the highest quality
cryptographic technology for securing applications.

• The Cryptographic service provider now uses, by default, the full-blinding
implementation of the RSA operation to help prevent against timing attacks.

• The Mozilla LDAP client libraries have replaced the iPlanet shared libraries on the
HP 11.00 64-bit platform. All platforms now use the Mozilla LDAP client libraries.
C h a p t e r 1 I n t r o d u c t i o n 23

Cert-C Architecture
Cert-C Architecture
The Cert-C SDK provides many essential programmatic components needed in a
public-key infrastructure. Figure 1-1 shows the following layers of functionality that
make up the Cert-C architecture:

• Application programming interface (API)
• Internal static libraries
• Service provider interface (SPI)
• Service Providers

Figure 1-1 Cert-C SDK Architecture

Cert-C SDK Architecture

Third-Party Service Providers

Client Application Client ApplicationClient Application

Cert-C Application Programming Interface

Internal Libraries

Cert-C
Context

Cert/CRL
Parsing

Certification
PKCS #10 PKCS #7 PKCS #12 ASN.1

Cert-C Service Provider Interface

Cert-C Service Providers

Certificate
Revocation

Database Status Log Crypto System Surrender PKICert/CRL
Extension

Certificate
Path

I/O
Stream

CRL
Revocation

OCSP
Revocation

LDAP

Memory

Default

CryptoAPI

SCEP DB

PKCS #11

Text Log
Crypto-C

with
BHAPI

and
PKCS #11

Platform
System

Calls

Text Line
Surrender CRS PKI

SCEP PKI

CMP PKI

X.509
Extension
Handlers

PKIX
Certificate

Path
File I/O
2 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Your Application
Your Application
Your application sits on top of the Cert-C SDK, as Figure 1-2 shows. The Cert-C SDK
provides an API layer; this API layer is the primary part of the Cert-C SDK with
which your application needs to interface. Some APIs are the interface between your
application and the internal Cert-C library, while others are the interface between
your application and a selected service provider.

Figure 1-2 Cert-C API

Cert-C API
The Cert-C SDK provides PKI functionality to your application through its
application programming interface; this API layer is the primary part of the Cert-C
architecture with which your application needs to interface. This API can be
categorized into two types of APIs. The first type of API gives your application an
interface to the internal Cert-C library, where standard PKI functionality is provided.
The second type of API provides additional PKI functionality, interfacing with service
providers. This last type of API enables your application to select a Cert-C service
provider, a third-party service provider, or a service provider created by you,
therefore providing greater flexibility.

If your application uses a service provider, you might need to provide your
application with information about the selected service provider. Also, not all service
providers are linked to an API function call. Cert-C is designed with a context
management component to assist applications in specifying and managing the
numerous parameters and service providers.

Your Application

Cert-C API

Cert-C Internal Static Libraries

Service Providers
C h a p t e r 1 I n t r o d u c t i o n 25

Cert-C Context
Cert-C Context
The Cert-C context, shown in Figure 1-3, collects a number of common parameters
and state variables together. It manages the Cert-C and service provider initialize and
finalize functions. It also tracks the currently registered service providers, manages
service-provider register and unregister functions, ordering and grouping of service
providers, and binding and unbinding service providers with a service handle.

Figure 1-3 Cert-C Context

Note: When performing operations that require a Cert-C context, make sure you use
the correct context. For more information about how to use a Cert-C context,
see “Cert-C Context” on page 66.

Cert-C Initialization
The Cert-C context is established when your application calls the C_InitializeCertC
function. This function allocates the application’s context and initializes the internal
fields of the context. It also initializes any service providers passed by the handlers
parameter, defined as a SERVICE_HANDLER data structure. This data structure provides
the Cert-C API with the service-provider information.

The C_FinalizeCertC function unregisters all currently registered service providers,
frees all memory associated with the context, and sets the context handle to NULL_PTR.

Cert-C Service Providers
In addition to the PKI functionality provided in the internal Cert-C library, the Cert-C
SDK also provides PKI functionality through the use of service providers, as shown in

Crypto PKIDatabase Third Party

Your Application

Cert-C API

Cert-C Context

Service Providers
2 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Service-Provider Initialization
Figure 1-4. Your application chooses a service-provider type and a specific service
provider within that type: either one of Cert-C’s service providers or a third-party’s
service provider. Your application can register or dynamically bind the service
provider. The service provider’s specifications customize the API function calls that
interface to your application. For more information about RSA Security’s Cert-C
service-provider implementations, see the “Service Provider” section of the API
Reference.

Figure 1-4 Cert-C Service Providers

Service-Provider Initialization
When the Cert-C context is established using the C_InitializeCertC function, all
currently registered service providers are initialized. Service providers are initialized
in order of type and in the specified order within each type. The service provider type
order is SPT_SURRENDER, SPT_LOG, SPT_CRYPTO, SPT_IO, SPT_DATABASE, SPT_DATABASE2,
SPT_CERT_STATUS, SPT_CERT_PATH, and SPT_PKI. There are also ways to initialize and
uninitialize service providers dynamically. For more information, see “Dynamic
Service-Provider Registration” on page 28.

Crypto PKI Third PartyDatabase

Cert-C
LDAP

Cert-C
Memory

Cert-C
Default

Cert-C
CryptoAPI

Cert-C
SCEP DB

Cert-C
PKCS #11

Your Application

Cert-C API

Cert-C Context

Service Providers
C h a p t e r 1 I n t r o d u c t i o n 27

Service-Provider Registering
Service-Provider Information

A service-provider instance is defined by its type, an instance name, and an
initialization function. The SERVICE_HANDLER data structure contains the
service-provider information. In general, distinct instances of a service provider may
have the same type and initialization function, but the name and the initialization
function’s parameters must be unique. Note, however, that only a single instance
(each) of type SPT_SURRENDER or SPT_CRYPTO may be registered.

Some Cert-C function calls require a SERVICE handle as an input parameter. The
SERVICE handle can be bound to a single service-provider instance, or it can represent
a sequence of service-provider instances, all of the same type. C_BindService is used
to bind SERVICE to a service provider. If you want to bind SERVICE to more than one
service provider, use the C_BindServices function. The SERVICE handle is useful
when you want to define a subset of service providers for a particular operation.

Service-Provider Functions

Whenever a service provider is initialized, the service provider specifies a set of
function pointers that are the service provider’s entry points. The Cert-C context uses
the SERVICE_FUNCS union to access the service provider's type-specific entry points.

Service-Provider Registering
When you register a new service provider, you can specify that the new service
provider should be inserted before or after all other service providers of the same
type. The service provider order affects the behavior of functions that use service
providers of a given type. The SERVICE_ORDER_FIRST constant indicates the service
provider should be inserted before others of the same type. The SERVICE_ORDER_LAST
constant indicates the service provider should be inserted after others of the same
type. The C_RegisterService function takes one of these constants as an input value
in its order field.

Dynamic Service-Provider Registration

You can register additional service providers, subsequent to the Cert-C context
initialization, by calling the C_RegisterService function. This function calls the
service provider’s initialization function and adds an entry for the service provider in
the Cert-C context’s internal list of service providers.
2 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Service-Provider Unregistering
Service-Provider Unregistering
You can unregister a service provider before calling the C_FinalizeCertC function.
When you do so, the service handler with the specified type and name is removed
from the Cert-C context, the service provider’s finalize function is called, and the
memory associated with the context’s copy of the service handler is freed.

Cert-C automatically unregisters all currently registered service providers associated
with a particular Cert-C context when the Cert-C context is finalized. You do not need
to call C_UnregisterService if the next Cert-C function call is C_FinalizeCertC.

You must be careful to ensure that the service provider you want to unregister is not
bound to any service handles. Using a service handle that includes an unregistered
service provider may cause the application to crash. You should call the
C_UnbindService function before you unregister the service provider.

Service-Provider Binding
In some situations, you may want to bind one or more currently registered service
providers to a service handle. A service handle is required for some Cert-C API
functions calls that can be directed to a particular service provider or set of service
providers. By calling either the C_BindService or C_BindServices function, you
create a service reference (handle) that can be used as a parameter to Cert-C functions.
This handle can target a specific service provider or set of service providers.

You should call C_BindService (as opposed to C_BindServices) in situations where a
single, currently registered service provider must be bound to a service handle. The
C_BindServices function binds one or more currently registered service providers to
a service handle.

Some service provider types (for example, SPT_DATABASE) allow an ordered list of
instances to be specified in the C_BindService’s name array (or C_BindServices names
array). If a NULL_PTR is specified for the name (or names) array, all of the service
provider instances of the given type are bound in registration order.

Service Provider Unbinding
You can unbind all service providers bound to a service handle by calling the
C_UnbindService function. This function undoes a previous binding of service
providers to the specified handle and frees any memory allocated by the
corresponding C_BindService(s) function call.
C h a p t e r 1 I n t r o d u c t i o n 29

Surrender Context
Surrender Context
Some Cert-C functions are time-consuming. When an application calls one of these
functions, it can appear as if the computer has crashed or frozen. A lengthy Cert-C
function can tie up the computer, forcing other applications or programs to wait until
the Cert-C function is finished before completing their execution. The Cert-C SDK
includes a surrender context, A_SURRENDER_CTX; this gives you a way to enable Cert-C
to surrender control. It contains a pointer to the application-specific Surrender
callback function that Cert-C calls to surrender control to the application. You should
call the C_GetSurrenderCtx function to return a pointer to a surrender context whose
contents are defined by the currently registered surrender context service provider.
For more information about A_SURRENDER_CTX and C_GetSurrenderCtx, see the API
Reference.

Cert-C SPI
The Cert-C SDK includes Cert-C implementations for each type of service provider
defined by the SPI. You can use a Cert-C service provider or choose a third-party
service provider. Alternatively, you may want to create your own service provider.
The Cert-C SDK provides an SPI for those who want to create a custom-built service
provider. Cert-C also provides most of the source code for the Cert-C service
providers; this source code can be used as a starting point for creating a custom
service provider.

When initialized, your custom-built service provider’s specifications customize the
API function calls that interface to your application. If you are considering creating
your own custom-built service provider, see “The SPI Architecture” section of the API
Reference as your primary reference source.
3 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 2

RSA Security Concepts
Before you use Cert-C, you should be familiar with the following basic cryptographic,
certificate management, and security concepts.

Secret-Key Cryptography
Secret-key or symmetric-key cryptography uses only one key to encrypt and decrypt
data. Therefore, the secret key must be known only to the originator and the
individual with whom the originator wants to share the secret data. The advantage of
secret-key cryptography is that it encrypts large amounts of data relatively efficiently.
However, a disadvantage to using secret-key cryptography is finding a way to
securely distribute the secret key.

Public-Key Cryptography
Public-key or asymmetric cryptography uses two keys, one public and the other
private. These keys are otherwise known as a key pair. The private key must be kept a
secret, while the public key can be transmitted in the clear to other parties. The private
key and the public key are mathematically related. A message that is signed by a
private key can be verified by the corresponding public key. Similarly, a message
encrypted by the public key can be decrypted by the private key. This method ensures
privacy because only the owner of the private key can decrypt the message. Both of
31

Key Management
these methods can be combined to provide secrecy and to verify the origination of
data.

Key Management
To sign messages or to send and receive encrypted messages, each user must have a
key pair. Users may have more than one key pair; for example, one key pair for work
and another key pair for personal use. Other entities may also have key pairs,
including electronic entities such as a modem, workstation, or printer, and
organizational entities such as a corporate department, hotel registration desk, or
university registrar’s office.

A corporation may require more than one key pair for communication. For example,
one or more key pairs may be used for encryption and a single key pair may be used
for authentication. The lengths of the encryption and authentication key pairs vary
according to the desired level of security. Generally, longer key lengths provide
greater security.

Users can generate their own key pairs or, depending on local policy, a security officer
may generate key pairs for a group of users. There are advantages and disadvantages
to both approaches. With the former approach, users must trust their copies of the
key-generation software. With the latter approach, users must trust the security
officer and private keys must be securely transferred to users.

Once generated, users must register their public keys with a central administrative
body, called a certificate authority (CA). They accomplish this by generating a
certificate request (which contains their public key) and then submitting it to the CA.
The CA returns to each user a certificate that attests to the validity of the user’s public
key, along with other information. If a security officer generates the key pair, then the
security officer can request the certificate for the user. Most users should get only one
certificate for a key, so that bookkeeping tasks associated with the key remain
uncomplicated.

Instead of registering their certificates with a CA, users may sign certificates
themselves, which commonly occurs for trusted roots. This kind of certificate is called
a self-signed certificate.

Private keys must be stored securely because their compromise can lead to loss of
privacy and forgery. The measures taken to protect a private key must be, at a
minimum, equal to the security measures taken when encrypting a message with the
private key. A private key should never be stored anywhere in plaintext form. The
simplest storage mechanism is to encrypt the private key under a password and store
the result on a disk. However, because some passwords can easily be guessed,
3 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Digital Signatures
passwords should be chosen very carefully. The Cert-C sample program keywrap.c
demonstrates the use of password-based encryption (PBE) to secure a private key, as
specified in Public-Key Cryptography Standard (PKCS) #8.

If an encrypted key is stored on a disk that is not accessible through a computer
network, such as a floppy disk or a local hard disk, some security attacks are more
difficult. It may be best to store the key on a computer that is not accessible to other
users, or to store the key on removable media that users can take with them when
they finish using a particular computer. Private keys can also be stored on portable
hardware, such as smart cards. Users with extremely high security needs, such as
CAs, should use these kinds of special hardware devices to protect their keys.

Digital Signatures
A digital signature is an electronic mark on data that identifies the signer and ensures
the integrity of the signed data. It can be compared to a handwritten signature in that
the mark can be produced by only one person, the signer. The digital signature also
ensures that the signed data did not change from the time it was signed to the time it
is checked. Figure 2-1 shows how a digital signature is created by performing the
following two steps:

• Using a message-digest algorithm, compute the message digest of the data to be
signed.

• Sign the message digest with the signer’s private key.

A message-digest algorithm is similar to a checksum in that it always produces the
same size output for any size input. A message-digest algorithm is cryptographically
stronger than a checksum and makes it infeasible to find two meaningful messages
with the same message digest.

The original data can now be transmitted and verified by anyone with knowledge of
the signer’s public key. The person receiving the signed data can verify the signer’s
signature and check the integrity of the data by performing the following three steps:

• Get the message digest from the signature using the signer’s public key.
• Using the same message-digest algorithm, compute the message digest of the

original data.
C h a p t e r 2 R S A S e c u r i t y C o n c e p t s 33

Digital Certificates
• Compare the decrypted message digest to the result of the message digest
computed independently on the same data.

Figure 2-1 Authentication: The RSA Digital Signature

Digital Certificates
A digital certificate, or simply a certificate, is a digital document that attests to the
identity of an individual or an entity. An entity can be an individual, an organization,
a piece of software, or a hardware device. A certificate acts as the binding between the
individual and the individual’s public key; the private key of the individual is kept
secret. Possession of the certificate’s private key, which mathematically relates to the
certificate’s public key, verifies the individual’s identity. In this way, a certificate
helps to prevent someone from using an inauthentic key to impersonate someone
else. The entity identified by a certificate is referred to as the certificate’s subject or
subscriber.

The purpose of a certificate is to verify the identity of an individual or entity;
however, it can also be used to digitally sign or encrypt data, to control access to
resources, or to implement nonrepudiation.

In its simplest form, a certificate contains an individual’s public key and name, a
validity period, the name of the CA that issued the certificate, a serial number, and a

PUBLIC

PRIVATE

COMPARE

Alice passes her document through a hashing
algorithm to produce the message digest, then
encrypts the digest with her RSA private key
(forming an RSA Digital Signature) and transmits
the signed document to Bob.

After receiving Alice's transmission, Bob uses
the same hashing algorithm to create another
message digest, and also decrypts the signature
using Alice's RSA public key. The two resulting
message digests are then compared.

Authentication: The RSA Digital Signature
3 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Extension Fields
signature algorithm identifier. Most importantly, the certificate contains the digital
signature of the certificate’s issuer.

Just as an individual’s driver’s license is issued by a trusted third party—in the
United States, the Department of Motor Vehicles—a certificate must be issued by a
trusted third party. This trusted third party is called a CA. A CA verifies a certificate
requester’s identity, creates a certificate, and then digitally signs the certificate with
the CA’s private key. The CA does this by computing the certificate’s message digest
and then signing it with its own private key. CAs also provide a way to distribute
public keys or certificates in the public domain.

The most common form of authentication involves enclosing one or more certificates
with a signed message. The recipient of the message first verifies the sender’s
certificate (or certificates) using the CA’s public key and, now confident of the
sender’s public key, verifies the message’s signature. The sender’s certificate(s), in
conjunction with one or more trusted certificates (or keys) already possessed by the
recipient, form a hierarchical chain, where one certificate attests to the authenticity of
the previous certificate. At the end of a certificate hierarchy chain is a top-level CA, or
root certificate. The root certificate is trusted without a certificate from any other CA
because it is self-signed. The public key of the top-level CA must be independently
known, for example, by being widely published.

Even if no certificates are enclosed with a signed message, a verifier can still use a
certificate chain to check the status of the public key. The verifier can simply look up
the certificates; for example, in a data store. Specifically, each signature contains the
certificate issuer’s name and the certificate’s serial number. (In a self-signed
certificate, the issuer name is the same as the subject name.)

Extension Fields
Extension fields contain additional information, either critical or noncritical, about a
certificate or CRL. An extension field has three parts: extension type, extension
criticality, and extension value. The extension criticality instructs a certificate-using
application on whether it may ignore an extension. If the extension criticality is set to
critical and the extension is not recognized by an application, it should reject the
certificate. On the other hand, if the extension criticality is set to noncritical and the
application does not recognize the extension, it is safe for the application to ignore the
extension and to use the certificate.

Extension fields provide a way to associate additional information with the user’s
identity and public key. Some of the fields can provide additional information about
the user. Other fields can contain information on the intended use of the public key
C h a p t e r 2 R S A S e c u r i t y C o n c e p t s 35

CRL Distribution Points
(for example, the key pair used for authentication or digital envelopes). Additional
fields can be used to locate other related certificates and certificate status information.

CRL Distribution Points
CRL distribution points is an extension that identifies how CRL information is
obtained.

Attribute Fields
An attribute field is similar to an extension field in that it provides flexibility and
scalability. However, the attribute field is used to request certificates within the
constraints of PKCS #10, the Certificate Request Syntax Standard. The certificate request
usually includes the Distinguished Name (DN) and public key of the user, along with
a set of attributes. Each attribute has an attribute type and a set of one or possibly
more values. An attribute type such as the time at which a message is signed has only
one value, whereas an attribute type such as a postal address may have multiple
values. PKCS #7 Signed-Data messages can also have attribute fields. PKCS #9 and
X.520 specify some of these standard attribute types.

Digital Envelopes
A digital envelope is a way to send a message privately from sender to recipient,
while also providing authentication of the sender.

A digital envelope combines the advantages of symmetric key and public-key
cryptography. Public-key algorithms are generally slower than symmetric-key
ciphers; for some applications they may be too slow to be practical. Symmetric-key
ciphers, however, present the problem of transmitting the key securely. As Figure 2-2
shows, a digital envelope provides a solution to this dilemma.

The sender encrypts the message using a symmetric-key encryption algorithm, and
then encrypts the symmetric key using the recipient’s public key. The recipient then
decrypts the symmetric key using the appropriate private key and decrypts the
message with the symmetric key. In this way, a fast encryption method processes
3 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Certificate Authority
large amounts of data, yet secret information is never transmitted unencrypted.

Figure 2-2 Privacy: The RSA Digital Envelope

Certificate Authority
A CA is any trusted central administrative body that accepts certificate applications
from entities, authenticates the entity, vouches for the identities of these entities by
issuing certificates, and maintains status information about these certificates. A
company may issue certificates to its employees, a university may issue certificates to
its students, and a town may issue certificates to its citizens.

To prevent forged certificates, the CA’s public key must be trustworthy. A CA must
either publicize its public key or provide a certificate from a higher-level CA that
attests to the validity of its public key. The latter solution involves a CA hierarchy.
The root key is the public key associated with the top of a certificate hierarchy. Unlike
other public keys within certificates in the certificate chain, a root key can be trusted
by some means other than a certificate. For example, a root key may be widely
published in a major periodical or standards document. A root key may also be
published as a self-signed root certificate.

An example of certificate issuance proceeds as follows. Alice generates her own key
pair and sends the public key to an appropriate CA with some proof of her

PUBLIC

Privacy: The RSA Digital Envelope

The encrypted document and key
together form the RSA Digital
Envelope. Only Bob's RSA private
key can open this envelope
"addressed" to him.

3.

Alice encrypts the document
with a random DES key.

1.

Alice looks up Bob's public key in
her network directory, and uses it
to encrypt the DES key.

2.
C h a p t e r 2 R S A S e c u r i t y C o n c e p t s 37

Certificate Chaining
identification. The CA checks the identification and takes any other steps necessary to
ensure that the request did come from Alice. The CA then sends her a certificate that
attests to the binding between Alice and her public key, along with a certificate
hierarchy, or certificate chain, that verifies the CA’s public key. Alice can present this
certificate chain whenever desired to demonstrate the legitimacy of her public key.

Because the CA must check for proper identification, an organization usually finds it
convenient to act as a CA for its own members or employees. Different CAs may have
different identification requirements. One CA may require presentation of driver’s
licenses, another may want certificate request forms to be notarized, and yet another
may want the fingerprints of those who request certificates.

To notify users as to whether their private keys have been compromised, CAs may
regularly issue CRLs. Each CA should publish its own identification requirements
and standards in a policy statement so that verifiers can attach the appropriate level of
confidence in the certified name-key bindings. CAs with lower levels of identification
requirements produce certificates with lower assurance.

Public-key certificates, such as X.509 certificates, determine the skeletal structure of
trust within a distributed public-key cryptosystem. By signing a certificate, a
certificate issuer binds together an entity's public key with the entity's name and other
information. By verifying the signature on the certificate, someone who trusts the
certificate issuer can develop trust in the entity's public key.

Because certificates are an essential part of an interoperable public-key standard,
PKCS adopted the use of X.509 certificates, which maintains compatibility with other
users of the X.509 standard.

Certificate Chaining
Certificate chaining is a method used to verify the binding between an entity and the
entity’s public key. To gain trust in a certificate, a certificate-using application must
verify the following about each certificate until it reaches a trusted root:

• Each certificate in the chain is signed by the public key of the next certificate in the
chain.

• Each certificate is not expired or revoked.
• Each certificate conforms to a set of criteria defined by certificates higher up in the

chain.

By verifying the trusted root for the certificate, a certificate-using application that
trusts the certificate issuer can develop trust in the entity's public key.
3 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Push Model Versus Pull Model
Push Model Versus Pull Model
The chaining described in the previous section relies on individuals having access to
all the certificates in the chain. There are two ways to get these certificates: the push
model and the pull model. In the push model, the sender pushes an entire chain of
certificates when sending one certificate to the recipient, and the recipient can
immediately verify all the certificates. In the pull model, the sender pushes only the
sender’s certificate, and then leaves it up to the recipient to pull in the CA’s certificate.

Because each certificate contains the issuer name, the recipient knows where to go.
X.509 v3 certificates offer more opportunities to place information in a certificate to
make searches easier; see “X.509 v3 Certificate Extensions” on page 253 for more
information. Even with the push model, some recipient chaining may be necessary. If
two people trying to communicate both have certificates, but each individual’s chain
leads to a different trusted root, they will have to somehow find a link between the
two hierarchies. As users and CAs receive more certificates, they will probably want
to keep them in a database. That way, future certificate checks can be made more
easy. In practice, the push model is commonly used with entire certificate chains sent
in PKCS #7 Signed-Data messages.

Trusted Root
A trusted root is a root certificate, or top-level CA certificate, which can be trusted by
a certificate-using application. A CA must either publicize its public key, also known
as a root key, or provide a certificate from a higher-level CA that attests to the validity
of its public key. A certificate-using application may import, store, and use the trusted
root keys of several CAs.

When a certificate-using application verifies a certificate, it follows the certificate’s
certificate chain path to its root certificate. This root certificate acts as the final point of
trust when verifying a certificate. A root certificate’s root key, unlike other public
keys, is not followed by another certificate to verify its trust. The root key is
sometimes trusted by some means other than a certificate. For example, a root key
may be widely published in a major periodical or standards document. Or, more
commonly, a root key may also be published as a self-signed root certificate.

Certificate Revocation List
A Certificate Revocation List (CRL) is a digitally signed document that a CA
publishes listing revoked certificates. A CA may revoke a certificate for many reasons.
For example, an entity may no longer work for the organization that requested the
C h a p t e r 2 R S A S e c u r i t y C o n c e p t s 39

Certificate Revocation List
certificate, or a certificate’s private key may have been compromised. Generally, the
entity that requests the certificate also instigates the revocation of the certificate.
However, a CA can revoke a certificate if the entity uses the certificate in a way that
violates the CA’s policies.
4 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Protocol Considerations
Protocol Considerations
RSA Security is committed to providing maximum interoperability in its PKI software
components. Toward this goal, the Cert-C toolkit incorporates several standards for
certificate and CRL creation, extension, importing, and exporting.

What Are the X.509 Standards?
The International Telecommunications Union, ITU-T (formerly known as CCITT), is a
multinational union that provides standards for telecommunication equipment and
systems, including X.500 directory, X.509 certificates, and Domain Names (DNs).

DNs are the standard form of naming. A DN is composed of one or more relative
distinguished names (RDNs), and each RDN is composed of one or more
attribute-value assertions (AVAs). Each AVA consists of an attribute identifier and its
corresponding value information—for example, CountryName = US.

DNs are intended to identify entities in the X.500 directory tree. An RDN is the path
from one node to a subordinate node. The entire DN traverses a path from the root of
the tree to an end node that represents a particular entity. A goal of the directory is to
provide an infrastructure to uniquely name every communications entity everywhere
(thus the distinguished in DN). Because of this, names in X.509 certificates are
perhaps more complex than one might like (for example, compared to an e-mail
address). Nevertheless, for business applications, DNs are worth the complexity,
because they are closely coupled with legal name registration procedures. Simple
names, such as e-mail addresses, do not offer this.

ITU-T Recommendation X.509 specifies the authentication service for X.500
directories, as well as the widely adopted X.509 certificate syntax. The initial version
of X.509 was published in 1988, v 2 was published in 1993, and v 3 was proposed in
1994 and considered for approval in 1995. V 3 addresses some of the security concerns
and limited flexibility that were issues in v 1 and v 2.

Directory authentication in X.509 can be carried out using either secret-key or
public-key techniques. The latter is based on public-key certificates. The standard
does not specify a particular cryptographic algorithm, although an informative annex
of the standard describes the RSA algorithm.
C h a p t e r 2 R S A S e c u r i t y C o n c e p t s 41

PKIX Profiles
An X.509 certificate consists of the following fields:

• Version
• Serial number
• Signature algorithm ID
• Issuer name
• Validity period
• Subject (user) name
• Subject public-key information
• Issuer unique identifier (v 2 and 3 only)
• Subject unique identifier (v 2 and 3 only)
• Extensions (v 3 only)
• Signature on the preceding fields

This certificate is signed by the issuer to authenticate the binding between the subject
(user’s) name and the subject's public key. The major difference between v 2 and v 3 is
the addition of the extensions field. This field grants more flexibility because it can
convey additional information beyond just the key and name binding. Standard
extensions include, for example, subject and issuer attributes, certification policy
information, and key usage restrictions.

X.509 also defines a syntax for CRLs. The X.509 standard is supported by a number of
protocols, including PKCS and PKIX.

PKIX Profiles
The Internet Engineering Task Force, IETF, has a working group attempting to
standardize several aspects of certificates, in accordance with the X.509 standard,
from certificate profiling to alternative certificate revocation methods. The first of the
PKIX standards, RFC 2459, profiles the X.509 v3 certificates and v2 CRLs for use on
the Internet. This standard is now superseded by RFC 3280. The Cert-C API conforms
to these PKIX standards. You can view the IETF RFCs at http://www.ietf.org/.

PKCS Messaging
RSA Security’s Public-Key Cryptosystem provides cryptographic methods in its
encryption technology. Along with X.509 certificates, the Public-Key Cryptography
Standards (PKCS) provide the foundation of certificate security features, and outline a
4 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKCS #7 and PKCS #10 Message Formats
set of standards for the secure and interoperable use of cryptography. These
standards have been implemented in thousands of applications and are used by
millions worldwide. RSA Security’s Cert-C SDK utilizes the message formats
specified and defined by PKCS #7 and PKCS #10, discussed in the next section.

Combined, these two standards provide the messaging and certification standards
necessary for Cert-C and other certification applications.

PKCS #7, PKCS #8, PKCS #10, PKCS #11, and PKCS #12 are described in detail in the
following sections, as some of the Cert-C APIs are directly devoted to implementing
these standards. The Cert-C API includes support for those elements of PKCS #1,
PKCS #5, and PKCS #9 that are referenced by these three main standards. For a
complete description of the Public-Key Cryptography Standards, see the RSA
Laboratories Web site (http://www.rsasecurity.com/rsalabs/pkcs/).

PKCS #7 and PKCS #10 Message Formats
PKCS #7 and PKCS #10 are particularly important to developers who are
implementing certification.

The Cryptographic Message Syntax Standard, PKCS #7, specifies a syntax for data
that may have cryptography applied to it, such as digital signatures and digital
envelopes. The purpose of PKCS #7 is to provide a standard syntax and
platform-independent digital representation for cryptographic data. Applications that
conform to the standard can interoperate regardless of platform differences as the
standard prescribes a way for them to read and compose messages. The Cert-C API
supports five data message types: Data, Signed Data, Enveloped Data, Encrypted
Data, and Digested Data.

The Certificate Request Syntax Standard, PKCS #10, specifies a syntax for composing
certification requests for a CA. The CA transforms a request into an X.509 digital
certificate. The certificate request usually includes the DN and the public key of the
user, along with a set of attributes.

PKCS #8 Private-Key Syntax
The Private-key Information Syntax Standard, PKCS #8, describes a syntax for
private-key information, including a private key for some public-key algorithm and a
set of attributes. The standard also describes syntax for encrypted private keys. The
intention of including a set of attributes is to provide a simple way for a user to
establish trust in information such as a DN or a top-level CA’s public key.
C h a p t e r 2 R S A S e c u r i t y C o n c e p t s 43

http://www.rsasecurity.com/rsalabs/pkcs/

PKCS #11 Cryptographic Token Interface
PKCS #11 Cryptographic Token Interface
The Cryptographic Token Interface Standard, PKCS #11, defines an API called
Cryptoki to devices that hold cryptographic information and perform cryptographic
functions. PKCS #11 addresses the goals of technology independence (any kind of
device) and resource sharing (multiple applications accessing multiple devices),
presenting to applications a common, logical view of the device called a
cryptographic token.

Cryptoki isolates an application from the details of the cryptographic device. The
application does not have to change to interface to a different type of device or to run
in a different environment; thus, the application is portable.

A number of cryptographic mechanisms (algorithms) are supported in the latest
version. Cryptoki v2.1 is intended for cryptographic devices associated with a single
user, so some features that might be included in a general-purpose interface are
omitted. For example, Cryptoki v2.1 does not have a means of distinguishing multiple
users. The focus is on a single user’s keys and perhaps a small number of certificates
related to them.

PKCS #12 Public/Private-Key Importing and
Exporting
The Personal Information Exchange Syntax Standard, PKCS #12, specifies a portable
format for storing or transporting a user’s certificate and private-key information.
This standard describes a transfer syntax for personal identity information, including
private keys, certificates, miscellaneous secrets, and extensions. You can use the
Cert-C function, C_ImportPKCS12, to import certificates contained in a PKCS #12
message from Netscape and Microsoft browsers, and C_ExportPKCS12, to export
certificates, CRLs, and private keys into a PKCS #12 formatted file.

OCSP Certificate Status
The X.509 Internet Public-Key Infrastructure Online Certificate Status Protocol, OCSP,
determines the current status of a digital certificate without requiring CRLs.

SCEP Certificate Request
The Cisco Simple Certificate Enrollment Protocol, SCEP, supports the secure issuance
4 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

CRS Certificate Request
of certificates to network devices in a scalable manner, using existing technology
whenever possible. The protocol supports the following operations:

• CA and RA public-key distribution
• Certificate enrollment
• Certificate revocation
• Certificate query
• CRL query
Certificate and CRL access can be achieved by using the LDAP, or by using the query
messages defined in SCEP.

CRS Certificate Request
The Internet PKI Certificate Request Syntax, CRS, specifies an interface to public-key
certification products and services based on PKCS #7 and PKCS #10. A small number
of additional services are defined to supplement the core certificate request service.
Current industry practice regarding the use of PKCS #7 and PKCS #10 is also
documented for the benefit of the Internet community. In general, the use of PKCS #7
in CRS is aligned to the Cryptographic Message Syntax (CMS), which provides a
super-set of the PKCS #7 syntax.

CMP Certificate Management
The X.509 Public-Key Infrastructure Certificate Management Protocols, CMP, defines
protocol messages for all relevant aspects of certificate creation and management.
Management protocols are required to support online interactions between PKI
components. For example, a management protocol might be used between a CA and a
client system with which a key pair is associated, or between CAs that issue
cross-certificates for each other.

Cert-C supports the following CMP protocol operations:

• Certificate request
• Key archival
• Key update
• Revocation request
C h a p t e r 2 R S A S e c u r i t y C o n c e p t s 45

ASN.1 BER and DER Encoding
ASN.1 BER and DER Encoding
Much of the data you deal with in cryptography is information passed between two
or more individuals. Perhaps you need to send a CA a certificate request, or maybe a
CA needs to send you a CRL. Not everyone uses the Cert-C SDK, and how
information is represented in the Cert-C SDK may be different from another
company’s package. There needs to be a standard way to describe certain
information. Basic Encoding Rules (BER) and Distinguished Encoding Rules (DER)
are two standards that can do this.

Open Systems Interconnection (OSI, described in ANSI X.200) is an internationally
standardized architecture that governs the interconnection of computers from the
physical layer up to the user application layer. OSI’s method of specifying abstract
objects is called Abstract Syntax Notation One (ASN.1 defined in X.680 and X.681),
and one set of rules for representing such objects as strings of ones and zeros is called
BER, defined in X.690. There is generally more than one way to BER-encode a given
value, so another set of rules, called DER, which is a subset of BER, gives a unique
encoding to each ASN.1 value. The RSA Laboratories Web site includes A Layman’s
Guide to a Subset of ASN.1, BER, and DER, which you will almost certainly find more
readable than the actual standard. You can get a copy of this document at http://
www.rsasecurity.com/rsalabs/pkcs/.

If your application must transfer information to another computer or software
package, you may find it necessary to convert the data into a DER-encoded string
before you send it. The BER or DER encoding of information is a simple concept; it is
merely a way to parse information with standardized identifying marks. However,
BER or DER encoding can be time consuming. The Cert-C SDK offers a way to encode
information into DER format by using the C_Get*DER and C_DEREncode* routines. It is
also possible to convert BER- or DER-encoded information into the Cert-C format
with the C_Set*BER and C_BERDecode* routines. These routines perform general
ASN.1 encoding and decoding. See the API Reference for additional information
regarding the ASN.1 functions.

The Cert-C SDK generally encodes data using DER and decodes data using BER. (The
only exception is when a standard specifies that DER must be used. For example,
PKCS #10 states that the data signed in a certificate request must be DER-encoded, not
BER-encoded.) The reason a Cert-C function gets DER and sets BER is that DER is a
subset of BER. Therefore, a BER reader will be able to understand DER. Unlike BER, a
DER encoding is unique. Thus, to avoid any possible confusion, the Cert-C output is
DER-encoded data.

Note that BER encoding does not put data into an ASCII string; it is simply a standard
way of describing certain abstract objects in binary form. Conversion into BER or DER
4 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

http://www.rsasecurity.com/rsalabs/pkcs/
http://www.rsasecurity.com/rsalabs/pkcs/

Character Sets
is known as BER encoding or DER encoding, while the conversion between binary to
ASCII is referred to as Base64 encoding and decoding. This may get confusing, but the
word encoding without a BER in front of it generally means binary-to-ASCII. If the
encoding is BER encoding or DER encoding, the BER or DER should be explicitly
stated.

Character Sets
When using the Cert-C SDK, you often enter information as a string. Cert-C accepts
thirteen kinds of strings, listed in the following table:

String Name Description

VT_BMP_STRING BMPString is a subtype of UniversalString that has its own
unique tag and models the Basic Multilingual Plane (the first 64K-2
cells) of ISO/IEC 10646-1.

VT_GENERAL_STRING All G and all C sets + SPACE + DELETE from the ISO International
Register of Coded Character Sets to be used with Escape
Sequences.

VT_GRAPHIC_STRING All G sets + SPACE from the ISO International Register of Coded
Character Sets to be used with Escape Sequences.

VT_IA5_STRING Tables 1, 6 + SPACE + DELETE from the ISO International Register of
Coded Character Sets to be used with Escape Sequences. It is the
entire ASCII character set. In hex, it is all the bytes from 0x20
through 0x7F.

VT_ISO646_STRING Table 6 + SPACE from the ISO International Register of Coded
Character Sets to be used with Escape Sequences.

VT_NUMERIC_STRING The characters 0, 1, through 9 + SPACE.

VT_PRINTABLE_STRING The characters A, B through Z + a, b through z + 0, 1 through 9 +
SPACE + APOSTROPHE + COMMA + (,), +, -, ., /, :, =, ?.

VT_TELETEX_STRING Tables 6, 87, 102, 103, 106, 107, 126, 144, 150, 153, 156, 164, 165, 168 +
SPACE + DELETE from the ISO International Register of Coded
Character Sets to be used with Escape Sequences.

VT_T61_STRING Tables 6, 87, 102, 103, 106, 107, 126, 144, 150, 153, 156, 164, 165, 168 +
SPACE + DELETE from the ISO International Register of Coded
Character Sets to be used with Escape Sequences.

VT_UNIVERSAL_STRING The characters that can appear in the UniversalString type are
any of the characters allowed by ISO/IEC 10646-1.

VT_UTF8_STRING The content of this type conforms to RFC 2279.
C h a p t e r 2 R S A S e c u r i t y C o n c e p t s 47

Character Sets
Printable String
A printable string is made up of characters that can be printed on any standard
printer or computer screen. For instance, the hex byte string 52 53 41 27 73 20 43
65 72 74 2D 43 translates to RSA’s Cert-C.

0x52 is the ASCII character R, 0x20 is the ASCII character <space>, and so on.
However, the list of possible VT_PRINTABLE_STRING characters does not correspond
exactly to the ASCII character set, or what you can type at the keyboard.
VT_PRINTABLE_STRING characters consist of the following.

A - Z

a - z

0 - 9

<space> ‘ () + , - . / : = ?

But suppose you need to use, for example, the hex values 0xCB or 0x16. They (along
with many others) do not correspond to standard characters you generally find on a
keyboard. These are not VT_PRINTABLE_STRING characters. If you want to use
non-printing characters in your string, use the tag VT_UTF8_STRING.

Note: UTF-8 is an alternate way of encoding UNICODE characters using a variable
number of bytes per character. It is designed so that 0x00-0x7f corresponds to
the standard ASCII characters. Also, 0x00-0x7f does not occur inside any
multi-byte character. This trait enables many routines that use 0x00 as an
end-of-string indicator to work, as well as routines that scan occurrences of
standard ASCII characters within a string. For European languages
(including English), a typical UTF-8-encoded string is shorter than the
standard UNICODE-encoded string, which requires a constant two bytes per
character.

VT_VIDEOTEX_STRING Tables 1, 13, 72, 73, 87, 89, 102, 108, 126, 128, 129, 144, 150, 153, 164,
165, 168 + SPACE + DELETE from the ISO International Register of
Coded Character Sets to be used with Escape Sequences.

VT_VISIBLE_STRING Table 6 + SPACE from the ISO International Register of Coded
Character Sets to be used with Escape Sequences.

String Name Description
4 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 3

Cert-C Setup
The directions for setting up Cert-C 2.7 are very similar to those of other RSA BSAFE
SDK products.

Before you can use Cert-C with your application, you need to install Cert-C and
Crypto-C in sibling directories. Then you need to perform some setup tasks, which
depend on your development environment. It is possible that you might also need to
install some third-party software. This chapter outlines those Cert-C setup
requirements.
49

Cert-C CD-ROM Contents
Cert-C CD-ROM Contents
The Cert-C CD-ROM contains (after decompression and installation) a complete set of
the Cert-C 2.7 header and library files that you can compile and link with your
products. It also contains source code for the Cert-C service providers so you can
modify them to meet any special requirements you might have in your applications.
Also included on the CD-ROM are sample programs and the Cert-C documentation
set.

The Cert-C CD-ROM contains the following items:

• In the CertC-27 directory, the readme-certc.txt, the
certc_27_releasenotes.pdf, and the certc_27_install.pdf files.

• A doc directory that contains the certc_27_releasenotes.pdf file and the
thirdpartylicense.pdf file. The third party licence file contains the complete
texts of any license agreements applicable to third-party software in this product.
This folder also contains the .pdf files that reflect the latest version of the manuals;
the Basic Developer’s Guide and the Advanced Developer’s Guide, as well as the
Reference folder. This folder contains the API Reference HTML files. You can
access the API Reference by opening the certc_reference.html file in the doc
directory.

• An include directory that contains all of the necessary header files used to
develop Cert-C 2.7 applications.

• A lib directory that contains library files compiled with production-quality
options for linking into your applications.

• A provider directory that contains all of the source code for the Cert-C service
providers developed by RSA Security.

• A rootdb directory that contains a tool used to assist you in constructing a
database of root certificates that can be used to validate certificates used by your
applications.

• A samples directory that contains numerous samples of how to use various
Cert-C features and interfaces.

• A complete copy of Crypto-C for use in developing Cert-C 2.7 applications.
5 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Installing Cert-C
Installing Cert-C
To use Cert-C 2.7, you must have Crypto-C 6.1 installed on your system. If you are
upgrading from Cert-C 1.0x, it is not possible to use any versions of Crypto-C prior to
6.1. If you are already using Crypto-C 6.1, you do not need to re-install it. Otherwise,
you need to install or upgrade to Crypto-C 6.1 first.

You do not need to uninstall or delete any previous versions of Crypto-C, Cert-C, or
BCERT. However, you must install each new product into a separate directory from
the old version. If you follow the guidelines given in the Installation Guide, old and
new versions of Cert-C and Crypto-C will peacefully coexist.

Cert-C and Crypto-C must be installed in sibling directories. For detailed instructions
about installing Cert-C, see the Installation Guide, certc_27_install.pdf, in the
Cert-C2.7 folder of the CD-ROM.

Compatibility with BCERT 1.0x
Backward compatibility with BCERT v1.0x and previous releases of Cert-C is a major
feature of Cert-C 2.7. You should be able to recompile applications based upon these
products using Cert-C 2.7 with little or no effort. For details on migrating from
BCERT to Cert-C, see Appendix B, “BCERT Compatibility” on page 295.

Customizing the UNIX Install Location
RSA Security has centralized all of the information to customize into a single file,
named Makerules.certc_root, located in the top-level directory. This file is
referenced by all of the makefiles to automate building the software libraries,
samples, and the rootdb utility.

Additionally, platform-specific compilation options are contained in file located in the
make directory. For example, the file make/Makerules.hp11.release contains the
build options for the PLATFORM=hp11 and BUILDTYPE=release configuration.

RSA Security used the exact same build structure, contained in these makerules files,
to build and test the software contained on the CD-ROM. Once you have a working
copy of the Cert-C tree, you must specify the platform and build type that you want to
compile. You must edit the Makerules.certc_root file and replace all the REPLACE_ME
C h a p t e r 3 C e r t - C S e t u p 51

Customizing the UNIX Install Location
strings to reflect the location and configuration of the software to be built. The
following is a prototype version of this information that contains the string
REPLACE_ME where your values must be set.

An explanation of these variables is provided in the following paragraphs.

CERTC_ROOT
This variable contains the directory in which your working, writable (not read-only)
copy of Cert-C 2.7 resides. In all cases, it is necessary to replace the string REPLACE_ME
with the location of this directory. For example, you may have placed your working
copy of Cert-C into /home/crystal/CertC-2.7.

PLATFORM
This variable contains the platform string that denotes the platform on (and for)
which the application is being developed. A table of these platform strings is
provided in Table 3-1, “Compile-Time and Link-Time Strings for Building
Applications,” on page 53.

BUILDTYPE
This variable contains the string that tells the Makefiles which version of the library
you are using to link. If you start developing your own service providers, you may
choose to build a debuggable version of your service provider library and link with
this library for debugging.

If you are using the libraries that RSA Security provides, and you will neither
customize any of this code nor use a debugger to step through the service provider
code, then this variable should remain set to release.

This local copy directory, for example, /home/jeff/Cert-C2.7.
CERTC_ROOT=REPLACE_ME

See the Basic Developer’s Guide for supported platform names,
for example, hp11.
PLATFORM=REPLACE_ME

Usually one of “release” or “release_mt”.
BUILDTYPE=REPLACE_ME
5 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

UNIX Platform-Specific Build Strings
UNIX Platform-Specific Build Strings
Table 3-1 contains the PLATFORM strings used to define the correct compile-time and
link-time settings for building applications.

If your target platform is not exactly one of these listed here, you should choose the
value that is equal to (or lesser than) the one that is appropriate for your platform. For
example, if you want to target an application for Red Hat Linux 7.2, you should use
the PLATFORM for Red Hat Linux 7.1.

Table 3-1 Compile-Time and Link-Time Strings for Building Applications

Software Platform PLATFORM

HP-UX 10.20 (PA-RISC 1.x) hp1020

HP-UX 11.00 (PA-RISC 2.0.1
32-bit)

hp11

HP-UX 11.00 (PA-RISC 2.0.1
64-bit)

hp64

Solaris 2.6 Solaris26

Solaris 8 and Solaris 9 Solaris28

Red Hat Linux 6.2 RedHat62

Red Hat Linux 7.1 and 8.0 RedHat71

IBM AIX 4.3.3 and AIX 5L 5.2 aix43
C h a p t e r 3 C e r t - C S e t u p 53

Using the Crypto-C Libraries
Using the Crypto-C Libraries
Although Cert-C bundles the complete set of Crypto-C libraries, you are licensed to
use Crypto-C only in conjunction with Cert-C. Please refer to your RSA Security
license agreement for additional information. See the Installation Guide
(certc_27_install.pdf), located in the Cert-C2.7 folder, for details on how and
where to install Crypto-C, and what version of Crypto-C you should use.

Third-Party Source Code
The Cert-C 2.7 software distribution media includes a complete set of the Cert-C
sources and libraries that enable customers to customize or enhance their
service-provider library, for linking with Cert-C applications. Cert-C also makes use
of third-party software. The thirdpartylicense.pdf file, located in the doc directory,
contains the complete texts of any license agreements applicable to third-party
software in this product. The following sections list these third-party software
distributions and details their redistribution limitations. You are also told where to
get the third-party software source if it is not already included in the Cert-C
CD-ROM. Installation specifications for the third-party software distributions are also
discussed.

CodeBase
Because of source code redistribution restrictions, RSA Security cannot provide you
with the source for the database engine used by the Cert-C Default Database service
provider in the provider/db/rsa directory. Due to dependencies on some of these
source files, it is also not possible to compile the sources for the Cert-C LDAP
Database service provider (provider/db/ldap), although the sources, as well as
precompiled objects, for this service provider, are included.

If you want to acquire the source code for the Cert-C Default Database service
provider, contact Sequiter Software Inc. at 780-437-2410 or www.sequiter.com/.

The CodeBase version that RSA Security licenses and distributes with Cert-C 2.7 in
object form is “CodeBase v6.4 for UNIX” and “CodeBase v6.4 for Win32 Platforms.”
RSA Security provides both the ‘glue code’ to integrate CodeBase into the Cert-C
provider architecture, as well as a Microsoft Studio project file used to build
CodeBase.
5 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

LDAP Usage
The following modifications were made to the CodeBase source itself to integrate it
with the Cert-C architecture:

All Platforms
• In the file c4hook.c, the function named error4hook() must be uncommented.
• In the file d4all.h, the #define statements for S4OFF_REPORT and S4OFF_TRAN must

be uncommented.

Win32
• In the file d4all.h, the #define statements for S4WIN32 must be uncommented.

UNIX
• In the file d4all.h, the #define statements for S4UNIX must be uncommented.

You may use the CodeBase software only with the Cert-C product. If you would like
to use the CodeBase software for any other purpose, you must license it directly from
Sequiter Software Inc.

Makefiles are included in this software distribution. These files enable you to rebuild
or modify the contents of the Cert-C service-provider library (libcertcsp.a) without
these components. Care must be taken to retain the pre-built object files for the db/
ldap and db/rsa providers that were previously described. Retention of these files is
necessary to build a complete service-provider library.

LDAP Usage
RSA Security includes the Mozilla organization’s LDAP client libraries for the Win32,
Solaris, Linux, HP-UX v10.20, and HP-UX v11.00 (32-bit) platforms (Netscape
Directory SDK for C v3.0) on the Cert-C CD-ROM. These libraries have been
precompiled and are included in the appropriate subdirectory of the lib directory for
all platforms. Similarly, the include files that go with these libraries are located in the
include/moziLDAP directory.

These platforms now make use of the software from Mozilla. The Mozilla code is
governed by an open source license, which is included in the thirdpartylicense.pdf
file located in the doc directory. You have the option to replace these header files and
libraries with others that you choose. However, software substitutions in this area are
not supported by RSA Security.
C h a p t e r 3 C e r t - C S e t u p 55

Building and Deploying Cert-C
Building and Deploying Cert-C
To build and deploy Cert-C, you must perform these platform-specific instructions.

Win32
To build any of the samples or utilities that RSA Security ships, use the Microsoft
Visual Studio workspace files (they have a .dsw extension). For the rootdb utility,
only a project file is provided. However, Visual Studio creates a workspace file for it
automatically.

The LDAP client library, nsldap32v30.dll, must be contained in the application’s
library search path. This is often accomplished by installing this DLL into
\<SYSTEM-ROOT>\system32.

UNIX and GNU-Linux
To build any of the sample or utilities that RSA Security ships, use the Makefiles and
Makerules files. Currently, you cannot build object files or executable files for
multiple platforms or multiple configurations in the same source tree. If you compile
more than one configuration, then you must have multiple copies of the source trees
for these different configurations. Also, we do not recommend you change a build
configuration in an already compiled source tree. As object files can reside in many
locations while generating a complete build, you must take great care in changing a
build configuration.

To choose a configuration to build, you must edit the Makerules.certc_root file prior
to compilation, see “UNIX Platform-Specific Build Strings” on page 53.

Solaris
Always specify either -lpthread when using cc or -lpthread before –lc when using
ld to link your application. Failure to do so will prevent the random number
generator from seeding correctly; this jeopardizes the integrity of random number
generation. The standard library’s (libc.a) pthread creation routine seems to fail,
whereas the routine in libpthread.a works successfully. When these calls fail,
information-gathering related to pthread timing races is skipped. Because of this, the
sources of system randomness are substantially decreased, and limit the randomness
of subsequently generated random numbers. This problem occurs when -lpthread is
5 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Sample Programs
omitted from the cc or ld command line when you link your application. This
problem is known to occur in Solaris v2.6, but may be present in other releases.

Sample Programs
The sample programs located in the samples subdirectory are command-line
applications that demonstrate some of the aspects of building public-key applications
using Cert-C 2.7. They use the Cert-C 2.7 library routines and are provided to Cert-C
customers in source form. Modifying source files and building the sample programs
is an excellent exercise to start developing with Cert-C.

Building Samples on Win32
The build directory contains the makefiles necessary to build the sample code. To
compile the samples, open the samples/make/build/samples.dsw workspace file. Do
not open the individual .dsp project files. Most of the samples depend on some
common utility functions (found in samples/common) encapsulated in the utils.dsp
project. Open samples.dsw to preserve these dependencies.

Note that there are utility files in the samples/common/include and samples/common/
source directories that contain definitions to the RSA_* functions used by many of the
samples. Therefore, Win32 customers should open the build/samples.dsw MSVC
v6.0 workspace file to preserve the dependencies between projects.

The input directory contains input files used as a quick test on many of the sample
programs.

Win32 customers can run these tests by using the command-line makefile in build/
test.win32. Win32 customers should make sure that the MSVC v6.0 command-line
utilities are available. This is usually done by running the vcvars32.bat batch file
provided as part of the MSVC v6.0 distribution. (The default installation location of
this file is C:\Program Files\Microsoft Visual Studio\VC98\Bin\vcvars32.bat.)

To automatically build and run the samples, Win32 users can go to the build
directory and run 'nmake -f test.win32 test'.

Similarly, UNIX customers can build and run the samples by going to the build
directory and running 'make -f test.unix test'.
C h a p t e r 3 C e r t - C S e t u p 57

Utility Routines
Utility Routines
Cert-C includes several utility routines to help you create and test your applications.
See the samples/common/include and samples/common/source directories for the
header files and source files. These utilities encapsulate common functions for your
programs and tests. For a list of these utility programs and how they work, see the
“Utilities” chapter of the Advanced Developer’s Guide.
5 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 4

Getting Started
This chapter outlines Cert-C programmatic information that you should know before
you start to develop an application that uses the Cert-C API. First, you learn about
how Cert-C represents information using objects. Each Cert-C object is listed and
described. Next, you find out how to call the Cert-C API. A model is presented to you
to show how Cert-C produces and reads information. You also learn about the Cert-C
programming standards, including memory management, the Cert-C context, and
how to write cleanup code.

This information will help you understand the examples presented in the following
chapters. These examples show you how to create the Cert-C objects, which represent
information such as certificates, certificate requests, CRLs, attributes, and extensions.
Each example is designed to familiarize you with a real-life programming task, within
the certificate management software environment.
59

Cert-C Objects
Cert-C Objects
This section discusses the use of objects in Cert-C. It lists all the various Cert-C objects
and gives a high-level description of what each represents.

Cert-C uses objects to represent information that is to be manipulated by Cert-C; these
objects are passed as arguments to Cert-C functions. The Cert-C objects are defined as
pointers; they serve as abstractions for various collections of information. Although
the details of an object are maintained internally by Cert-C, you can use Cert-C API
functions to manipulate the information in the object. For example, without knowing
how a certificate object, CERT_OBJ, is represented internally in the Cert-C library, you
can use Cert-C API functions that operate on the CERT_OBJ object to set and get
information about the certificate.

You first create an object by calling one of the related functions. Then you can set the
object with the desired information, or get information about an object that has
already been set by either you or Cert-C. Finally, when the object is no longer needed,
you should destroy the object.

To get or set information about an object, you must use a C_Get* or C_Set* function.
These functions enable access to an object’s information. You cannot make any
assumptions about the format of the data in a Cert-C object.

The following table lists each Cert-C object with a brief description. For detailed
information about each object and their related C_Create*, C_Destroy*, C_Set*, and
C_Get* functions, see the referenced chapter.

Cert-C has the following objects, listed here alphabetically.

Object Name Description See

ATTRIBUTES_OBJ Represents extra information about
the certificate subject in a certificate
request. It is also used as a general
mechanism for storing attribute
types and values.

Chapter 7

C_CMS_OBJ Represents a CMS message. API
Reference

CERT_OBJ Represents certificate information. Chapter 10
6 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Cert-C Objects
CRL_ENTRIES_OBJ CRL_ENTRIES_OBJ is the part of
the CRL_OBJ object that represents
the serial numbers, revocation times,
and X.509 v3 CRL Entry extensions
for each revoked certificate.

Chapter 14

CRL_OBJ Represents CRL information. Chapter 14

EXTENSIONS_OBJ Represents an X.509 v3 extension set
that contains one or more extension
entries.

Chapter 15

LIST_OBJ Represents a collection of abstract
data types, including types defined
by Cert-C and types defined by your
application. For example, LIST_OBJ
can contain a list of certificate
objects or ITEMs.

Chapter 6

NAME_OBJ Represents the names of entities
involved in a PKI.

Chapter 7

PKCS10_OBJ Represents certification-request
information.

Chapter 8

PKI_CERT_CONF_REQ_OBJ Represents a confirmation to the CA/
RA to accept or reject an issued
certificate.

Chapter 9

PKI_CERT_CONF_RESP_OBJ Represents a confirmation to the
client to indicate acceptance of the
certificate confirmation request. In
the current specification and
implementation, supported
certificate confirmation response
messages do not actually contain
any information.

Chapter 9

PKI_CERT_REQ_OBJ Represents an initialization request
or certificate request to a CA/RA to
request a certificate.

Chapter 9

PKI_CERT_RESP_OBJ Represents the initialization
response or certification response
back to the client.

Chapter 9

Object Name Description See
C h a p t e r 4 G e t t i n g S t a r t e d 61

Cert-C Objects
In addition, Cert-C uses the Crypto-C’s key object, B_KEY_OBJ. See “Using BSAFE
Crypto-C” on page 287, for a quick-start guide to using Crypto-C; it discusses the
B_KEY_OBJ.

PKI_CERT_TEMPLATE_OBJ Represents the template that
specifies the information that goes
into a certificate in the certificate
request process.

Chapter 9

PKI_ERROR_MESSAGE_OBJ Represents PKI messaging error
information.

Chapter 9

PKI_KEY_UPDATE_REQ_OBJ Represents a key update request for
a certificate to a CA/RA.

Chapter 9

PKI_KEY_UPDATE_RESP_OBJ Represents the response back to the
client after the client has sent a key
update request.

Chapter 9

PKI_MSG_OBJ Represents certification, key update,
certificate revocation, and key
archival requests and responses,
and any other information that might
pass between a
certification-requesting application
and a CA or RA.

Chapter 9

PKI_REVOKE_REQ_OBJ Represents a revocation request to a
CA/RA to revoke one or more
certificates.

Chapter 9

PKI_REVOKE_RESP_OBJ Represents a response back to the
client when the client has sent a
revoke certificate request.

Chapter 9

PKI_STATUS_INFO_OBJ Represents encapsulated
provider-specific status and failure
information.

Chapter 9

Object Name Description See
6 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Calling the Cert-C API
Calling the Cert-C API
Cert-C API procedures generally follow a predictable sequence:

1. Include the necessary Cert-C header files.
2. Set up a Cert-C context. In this step, you register the desired service providers by

calling C_InitializeCertC.
3. Perform the desired operations. For example, build an attributes object, sign and

verify a certificate, or retrieve a certificate from your database.

Note: The operations that your application performs depends on the purpose of the
application.

In addition, each object generally goes through the following steps:
a. Create the object: Instruct Cert-C to allocate space for the object.
b. Set or Get information: Fill the object with information. This is usually done

by loading BER-encoded data or by setting fields individually. Similarly, an
application can retrieve the DER-encoded data in the object or retrieve values
of individual fields.

c. Destroy memory: Instruct Cert-C to clear sensitive data and free allocated
memory.

4. Clean up: Clear sensitive data, destroy unneeded Cert-C objects, and free
allocated memory.
C h a p t e r 4 G e t t i n g S t a r t e d 63

Cert-C Model
Cert-C Model
In Cert-C, you either produce information or you read information. This is done
through objects. The following two sets of steps are intended to give you a rough
outline for producing and reading information.

Producing Information
When producing information, you can follow these five general steps. However, there
will be situations where these five steps do not fit your programming requirements.

1. Create an object.
2. Enter the information (C_Add*, C_Set*, or C_Set*Fields).
3. Perform the operation (C_Sign*).
4. Retrieve the information in DER format (C_GetDER*).
5. Destroy the object.

Figure 4-1 Process to Produce Information

Reading Information
When reading information, you can follow these five general steps. However, there
will be situations where these five steps do not fit your programming requirements.

1. Create an object.

Create
Object

Enter
Information

Perform
Operation

GetDER
Destroy
Object

Name

Address

Company

Public Key

Name

Address

Company

01 00 30 06

35 a7 41 7b

92 55 ...

Public Key

Private Key
6 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Reading Information
2. Set the object with the information in BER format (C_Set*BER).
3. Read the information (C_Get*, C_Get*String, C_Get*Fields).
4. Perform the operation (C_Verify*).
5. Destroy the object.

Figure 4-2 Process to Read Information

There will be variations on these step-by-step procedures. However, for the most part
Cert-C follows one or the other of the five-step processes.

Perform
Operation

01 00 30

06 35 a7

41 7b 92

5b ...

Public Key

Create
Object

SetBER GetFields
Destroy
Object

01 00 30

06 35 a7

41 7b 92

5b ...

Name

Address

Company
C h a p t e r 4 G e t t i n g S t a r t e d 65

Cert-C Programming Standards
Cert-C Programming Standards
This section presents some programming standards that you should adhere to while
writing code using the Cert-C API.

Memory Management
Certain Cert-C functions own and manage particular pieces of memory. You should
never clear or tamper with this memory. The memory that you allocate, you must
clear. Similarly, the memory that Cert-C allocates, it will clear.

For example, the C_Get*BER functions always return memory owned by Cert-C. You
must not clear this memory. The C_Set*BER function always makes a copy of the BER
(if it keeps one), so it may be disposed of at any time by your application.

Cert-C Context
When you call a C_Create*Object function to create an object, you pass the function a
Cert-C context, CERTC_CTX, as the ctx parameter. A reference to the CERTC_CTX is
stored internally in the newly created object, rather than an actual copy of the context.
You create an object with a CERTC_CTX so you can use the object later to perform
subsequent C_* calls that require a CERTC_CTX; for example, to use a cryptographic
service provider to do signing operations. As the context is already contained in the
object, you do not need to pass a context to each function that operations on the object.
Because a Cert-C context is referenced by an object, you must not prematurely destroy
a Cert-C context that is still referenced by a live object.

The attributes, name, and list objects are exceptions to this rule. None of these objects
require a CERTC_CTX.

Clean Up
Always initiate objects to NULL_PTR. This ensures that any clean-up code you write can
perform safely and predictably.

Call the T_memset function on *_FIELDS structures to clear them before you populate
their subfields. This ensures forward compatibility. If a new parameter is added to an
existing structure, and you call T_memset, then you do not need to change your
application to set the new parameter to 0 (zero). The T_memset statement clears all
fields in these structures.
6 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Header Files
Header Files
To use Cert-C in your application, you must include the certc.h header file. The only
other header files that you need to include are service-provider header files. Which
service-provider header file you need to include depends on which operations you
intend to perform in your application. For example, if you intend to do a
cryptographic operation, then you need to include the certcsp.h header file.

#include “certc.h”
#include “certcsp.h”
C h a p t e r 4 G e t t i n g S t a r t e d 67

Sample Code Conventions
Sample Code Conventions
You will probably make extensive use of the samples included on the Cert-C
CD-ROM, when you are writing your application. The following information will
help you understand these samples better.

Routine Names
• Routines that start with C_* are core Cert-C functions.
• Routines that start with S_* are service-provider-specific functions.
• Routines that start with RSA_* are utility functions defined in the demo code.
Functions defined in the sample code that you may be particularly interested in begin
with RSA_. The purpose of the RSA_ prefix is to highlight those functions and to avoid
conflicting function names if you decide to cut and paste this code into your
application.

Return Values
All RSA_ functions, according to standard RSA Security coding practices, return an
integer called status. If the integer returned is 0 (zero), the function has completed
successfully. A non-zero error code indicates an error or abnormal condition.

Cleanup Code
It is a good idea to initialize any object to NULL_PTR. If there is an error before an object
has the chance to be created, the cleanup code acts on a NULL_PTR and does not do any
damage.

Cert-C sample coding practices use cleanup functionality to make it easy to break out
of a sequence when encountering an error. If you encounter an error, use a goto
statement to proceed to the necessary cleanup code before you exit. Further code that
depends on the offending function call does not execute. However, the code in that
cleanup section, such as code that overwrites sensitive memory with zeroes, always
executes, whether or not there was an error. This ensures that the routine does not
return incomplete results.
6 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Crypto-C API
Crypto-C API
You can call the Crypto-C API directly. See the Crypto-C Developer’s Guide for more
information about calling the Crypto-C API.

Appendix A, “Using BSAFE Crypto-C” on page 287, presents a quick-start guide to
using Crypto-C.

Routine Names
• Routines that start with B_* are core Crypto-C functions.
• Structures that start with B_* are Crypto-C structures, for example,

B_PKCS11_SESSION.
• Objects that start with B_* are Crypto-C objects; for example, B_KEY_OBJ.
C h a p t e r 4 G e t t i n g S t a r t e d 69

Deprecated Functions and Structures
Deprecated Functions and Structures
The following is a list of functions that were deprecated in the Cert-C 2.5 release.

The following is a list of structures that were deprecated in the Cert-C 2.5 release. The
information that was in these deprecated structures is now represented by new PKI

Table 4-1 Functions Deprecated in Cert-C 2.5

Deprecated Function Use New Function

C_GeneratePKIProofOfPossession C_GeneratePKIMsgProofOfPossession

C_GetPKICertRequestFields For a list of the new C_Get* functions that update
the specific fields of a PKI_CERT_REQ_OBJ, see
“Get PKI_CERT_REQ_OBJ Functions” on page 150.

C_GetPKICertResponseFields For a list of the new C_Get* functions that update
the specific fields of a PKI_CERT_RESP_OBJ,
see “Get PKI_CERT_RESP_OBJ Functions” on
page 151.

C_GetPKIMsgFields For a list of the new C_Get* functions that update
specific fields of a PKI_MSG_OBJ, see “Get, Set,
or Modify PKI_MSG_OBJ Functions” on page 133.

C_ReadPKICertResponseMsg C_SetPKIMsgBER

C_RequestPKICert C_RequestPKIMsg

C_SendPKIMsg C_SendPKIRequest

C_SetPKICertResponseFields For a list of the new C_Set* functions that update
the specific fields of a PKI_CERT_RESP_OBJ,
see “Set or Modify PKI_CERT_RESP_OBJ
Functions” on page 151.

C_SetPKICertRequestFields For a list of the new C_Set* functions that update
the specific fields of a PKI_CERT_REQ_OBJ, see
“Set or Modify PKI_CERT_REQ_OBJ Functions” on
page 149.

C_SetPKIMsgFields For a list of the new C_Set* functions that update
specific fields of a PKI_MSG_OBJ, see “Get, Set,
or Modify PKI_MSG_OBJ Functions” on page 133.

C_ValidatePKIProofOfPossession C_ValidatePKIMsgProofOfPossession

C_WritePKICertRequestMsg C_GetPKIMsgDER
7 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Deprecated Functions and Structures
objects.

Table 4-2 Structures Deprecated in Cert-C 2.5

Deprecated Structure Use New Object or Structure

PKI_MSG_FIELDS PKI_MSG_OBJ

PKI_CERTREQ_FIELDS PKI_CERT_REQ_OBJ

PKI_CERTRESP_FIELDS PKI_CERT_RESP_OBJ

PKI_RECIPIENT PKI_RECIPIENT_INFO
C h a p t e r 4 G e t t i n g S t a r t e d 71

7 2

Chapter 5

Cert-C Context and Services
This chapter discusses how to initialize the Cert-C context and discusses other core
functionality that hold state variables and track registered service providers. It also
discusses functionality to initialize, register, and bind services. Then it discusses the
actual services.
73

Cert-C Handles
Cert-C Handles
Cert-C provides the following handles to hold state variables and track service
providers.

• CERTC_CTX

• SERVICE_HANDLER

• SERVICE

• DB_ITERATOR

• STREAM

• EXTENSION_HANDLER

• LIST_OBJ_ENTRY_HANDLER

Using the CERTC_CTX and SERVICE_HANDLER
Handles
Cert-C is designed with a context management component to assist applications in
specifying and managing the numerous parameters and service providers.

It collects a number of common parameters and state variables together. It manages
the Cert-C and service provider initialize and finalize functions. It also tracks the
currently registered service providers, manages service-provider register and
unregister functions, ordering and grouping of service providers, and binding and
unbinding service providers to a SERVICE handle.

The Cert-C context is established when your application calls the C_InitializeCertC
function.

This function allocates the application’s CERTC_CTX and initializes the internal fields of
the context. It also initializes any service providers passed by the handlers parameter,
defined as a SERVICE_HANDLER data structure. This data structure provides the Cert-C
API with the service-provider information.

At initialization time, your application chooses a service-provider type and a specific

int C_InitializeCertC (
 SERVICE_HANDLER *handlers, /* table of service providers */
 POINTER *handlerParams, /* table of handler parameters */
 unsigned int handlerCount, /* # of entries in tables */
 CERTC_CTX *ctx /* (out) Cert-C context handle */
);
7 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Initializing the Cert-C Context
service provider within that type: either one of Cert-C’s service providers or a
third-party’s service provider. Your application registers or dynamically binds the
service provider. The service provider’s specifications customize the API function
calls that interface to your application.

In the case where your application uses a service provider, your application may need
to know information about the selected service provider. Also, not all service
providers are linked to an API function call.

Note: When performing operations that require a Cert-C context, make sure you use
the correct context. For more information about how to use a Cert-C context,
see “Cert-C Context” on page 66.

The C_FinalizeCertC function unregisters all currently registered service providers
and frees all memory associated with the context, and sets the CERTC_CTX context
handle to NULL_PTR.

Use the C_RegisterService function to register additional service providers
subsequent to Cert-C initialization. This function calls the service provider’s
initialization function and adds an entry for the service provider in the context’s
internal list of service providers. The order input field specifies whether the service
provider should be placed before or after other service providers of the same type in
the context’s internal service table.

Use the C_UnregisterService function to unregister a previously registered service
provider. The SERVICE_HANDLER with the specified type and name is removed from
the CERTC_CTX, the service provider’s finalize function is called, and the memory
associated with the context’s copy of the service handler is freed.

Cert-C automatically unregisters all currently registered service providers when the
Cert-C library is shut down, so the application does not need to call
C_UnregisterService if the next Cert-C call is C_FinalizeCertC.

You must be careful to ensure that the service provider being unregistered is not
bound to any SERVICE handles. Using a SERVICE handle that includes an unregistered
service may cause the application to crash.

Initializing the Cert-C Context
In this example, you initialize a Cert-C context and register a service provider at
initialization time. It demonstrates the C_InitializeCertC, CERTC_CTX, and
C_FinalizeCertC functionality.

You need to link in the certc library and possibly other libraries. Make sure the
compiler can locate header files. In MSVC v6.0, add the include files by selecting
C h a p t e r 5 C e r t - C C o n t e x t a n d S e r v i c e s 75

Initializing the Cert-C Context
Project, Settings, C/C++, Preprocessor, and then Additional include
directories.

Step 1: Include header files

You must include the necessary header files.

Step 2: Set up a Cert-C context
In this step, you create a Cert-C context, CERTC_CTX, and set up the service provider
information for each group of service providers you want to use. To do so, you must
fill a structure with the service provider’s parameters and pass this structure on to an
initialization routine.

Prepare the service providers that you intend to use.

Step 3: Initialize Cert-C

To initialize Cert-C, call C_InitializeCertC at application startup time. This function
registers the service providers and initializes Cert-C internal variables. The second
parameter, spParams, is an array of pointers to arguments that Cert-C passes to the

#include "certc.h"

/* Include other service-provider-specific header files */

#include “myspheader.h”
#define PROVIDER_COUNT 1

int status = 0;

CERTC_CTX ctx = (CERTC_CTX)NULL_PTR;
SERVICE_HANDLER spTable[PROVIDER_COUNT];
POINTER spParams[PROVIDER_COUNT];
spParams[0] = NULL_PTR;

spTable[0].type = SPT_TYPE; /* Service Provider Type */
spTable[0].name = "SP Name"; /* Unique null-terminated string */
spTable[0].Initialize = S_InitializeMySP; /* Initalize function */
7 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Registering a Service Provider After Cert-C Initialization
corresponding S_Initialize* routine, in the SERVICE_HANDLER array.

Step 4: Perform operations
You can now perform Cert-C functions, such as adding or retrieving a certificate to
your database or generating an RSA key pair.

Step 5: Clean up
When you finish performing an operation, you must call C_FinalizeCertC. This
function clears sensitive data and frees allocated memory, then finalizes the context.

With objects, what you create, you must destroy. With contexts, what you initialize,
you must finalize.

Registering a Service Provider After Cert-C Initialization
This example demonstrates how to register an additional service provider,
subsequent to the Cert-C context initialization, by calling the C_RegisterService
function. For another example of how to register an additional service provider, see
the samples/pkcs7/pkcs11msg.c sample program.

Step 1: Set up service provider
First, you include the service provider’s header file. Then you use the
SERVICE_HANDLER structure to set up the service-provider initialization information.
For more information about the SERVICE_HANDLER structure, see the API Reference.

status = C_InitializeCertC (spTable, spParams, PROVIDER_COUNT, &ctx);

C_FinalizeCertC (&ctx);

typedef struct {
 int type; /* type of service provider */
 char *name; /* service provider name */
 int (*Initialize) (
 CERTC_CTX ctx, /* Cert-C context */
 POINTER params, /* provider-specific parameters */
 SERVICE_FUNCS *funcs, /* (out) provider functions */
 POINTER *handle /* (out) provider handle */
);
} SERVICE_HANDLER;
C h a p t e r 5 C e r t - C C o n t e x t a n d S e r v i c e s 77

Registering a Service Provider After Cert-C Initialization
Finally, you create a pointer to the service provider’s initialization parameters. You
are registering a new service provider, subsequent to the Cert-C context initialization,
so you already have an initialized CERTC_CTX.

Step 2: Register the service provider

Call the C_RegisterService function to register the service provider. This function
calls the service provider’s initialization function and adds an entry for the service
provider in the context’s internal list of service providers. For more information about
the C_RegisterService function, see the API Reference.

You already have an initialized CERTC_CTX. The second parameter, serviceHandle,
passes an address for the SERVICE_HANDLER that contains the specified service
provider’s initialization information. The third parameter, spParams, is a pointer to an
argument that Cert-C passes to the corresponding S_Initialize* routine, in the
SERVICE_HANDLER handle. In this example, the service provider is placed after other
service providers of the same type in the context’s internal service table. To place it
first, use SERVICE_ORDER_FIRST.

#include "myspheader.h"

#define SP_NAME “My service provider”
/* Assume a context has already been initialized */

SERVICE_HANDLER serviceHandle = {SPT_TYPE, SP_NAME, S_InitializeMySP};

POINTER mySPParams = NULL_PTR;

int C_RegisterService (
 CERTC_CTX ctx, /* Cert-C context handle */
 SERVICE_HANDLER *handler, /* service handler to register */
 POINTER params, /* service initialization parameters */
 int order /* first or last */
);

status = C_RegisterService (ctx, &serviceHandle,
 (POINTER)mySPParams,
 SERVICE_ORDER_LAST);
if (status != 0)
 goto CLEANUP;
7 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Unregistering a Service Provider
Unregistering a Service Provider
This example demonstrates how to unregister a previously registered service
provider, by calling the C_UnregisterService function. For more information about
the C_UnregisterService function, see the API Reference.

The SERVICE_HANDLER with the specified type and name is removed from the context,
the service provider’s finalize function is called, and the memory associated with the
context’s copy of the service handler is freed.

The application must make sure that the service provider being unregistered is not
bound to any SERVICE handles. Using a SERVICE handle that includes an unregistered
service provider may cause the application to crash.

Note: Cert-C automatically unregisters all currently registered service providers
when the Cert-C library is shut down, so the application does not need to call
C_UnregisterService if the next Cert-C call is C_FinalizeCertC.

Using the SERVICE Handle
Use SERVICE as an input parameter for some Cert-C functions. Cert-C functions that
target a specific service provider or set of service providers have a SERVICE handle as
a parameter. The SERVICE handle is designed to be used for a limited time; that is, to
supply a tempory handle to associate selected service providers.

You can bind the SERVICE handle to a single service-provider instance, or you can
bind it to a sequence of service-provider instances, all of the same type. All the service
providers to be bound to the SERVICE handle must be currently registered with the
given Cert-C context. Use the C_BindService and C_BindServices functions to create
a SERVICE handle. Once you create a SERVICE handle, you cannot add another service
provider to that handle. Instead, you must create a new SERVICE handle and associate
all the required service providers with the new SERVICE handle.

void C_UnregisterService (
 CERTC_CTX ctx, /* (mod) Cert-C context */
 int type, /* service type */
 char *name /* service instance name(s) */
);

C_UnregisterService (ctx, SPT_TYPE, SP_NAME);
C h a p t e r 5 C e r t - C C o n t e x t a n d S e r v i c e s 79

Binding a Service
Binding a Service
Use the C_BindService function to create a SERVICE handle and bind a single service
provider, which is currently registered with the given Cert-C context, to that handle.

For example, to bind the Cert-C In-Memory Database service provider, you must
create a SERVICE handle for use with the database API function calls.

Binding More Than One Service
To bind one or more currently registered service providers, of a single type, you
create a SERVICE handle, using the C_BindServices function. For more information
about the C_BindServices function, see the API Reference.

Some service-provider types (for example, SPT_DATABASE and SPT_DATABASE2) allow
an ordered list of instances to be specified in the service name array. If a NULL_PTR is
specified for names, all of the service-provider instances of the given type are bound in

int C_BindService (
 CERTC_CTX ctx, /* Cert-C context */
 int type, /* service type */
 char *name, /* service instance name */
 SERVICE *service /* (out) service pointer */
);

SERVICE handle = NULL;

status = C_BindService (ctx, SPT_TYPE, SP_NAME, &handle);
if (status != 0)
 goto CLEANUP;

int C_BindServices (
 CERTC_CTX ctx, /* Cert-C context */
 int type, /* service type */
 char **names, /* service instance names */
 unsigned int nameCount, /* # of provider names being bound */
 SERVICE *service /* (out) service pointer */
);
8 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Unbinding a Service
registration order.

Unbinding a Service
To unbind a service provider, call the C_UnbindService function. This function
undoes a previous binding of a service provider to the specified SERVICE handle. For
more information about the C_UnbindService function, see the API Reference.

If more than one service provider is bound to a SERVICE handle, calling
C_UnbindService unbinds all of the service providers associated with the specified
handle. The function frees any memory allocated by the corresponding
C_BindService or C_BindServices calls.

Using the Database Iterator Handle
Use the database iterator handle, DB_ITERATOR, to sequentially retrieve records of a
particular type from a database or a set of databases. Each of the C_SelectFirst*
functions initializes the DB_ITERATOR handle. Call the C_FreeIterator function to set
DB_ITERATOR to NULL_PTR. The C_SelectFirst* and C_SelectNext* function calls also
free DB_ITERATOR when they encounter an error or when all of the records of the
requested type are retrieved.

For an example of how DB_ITERATOR is used, see “Retrieving a Certificate, CRL, or
Private Key” on page 212.

SERVICE handle = NULL_PTR;
/* Assume the service providers of type SP_TYPE are already */
/* registered with the CERTC_CTX used here. */

status = C_BindServices (ctx, SPT_TYPE, NULL_PTR, 0,
 &handle);
if (status != 0)
 goto CLEANUP;

int C_UnbindService (
 SERVICE *service /* (mod) service pointer */
);

C_UnbindService (&handle);
C h a p t e r 5 C e r t - C C o n t e x t a n d S e r v i c e s 81

Using the STREAM Handle
Using the STREAM Handle
Use the STREAM handle to represent an open input or output stream when calling
Cert-C file stream functions, such as C_ReadStream. For an example of how a STREAM
handle is used, see the samples/io/usememio.c sample.

Using the Extension Handler
Use the EXTENSION_HANDLER extensions handler to hold pointers to callback functions
for a particular extension type. Cert-C provides a default extension handler for each
Cert-C-defined extension type; however, if you override a default extension handler
or if you define a new extension type, you must provide the callback functions.

For more information about the EXTENSION_HANDLER, see the API Reference. For an
example of how it is used, see “User-Defined Extensions” on page 270. For an
example of how to register an EXTENSION_HANDLER with a CERTC_CTX, see “Registering
a User-Defined Extension” on page 279.

Using the List Object Entry Handler
Use the LIST_OBJ_ENTRY_HANDLER to store any kind of application-defined data in a
LIST_OBJ, even though Cert-C has no knowledge of the type of data structure the
application requires. The application must set up the AllocAndCopy and Destructor
callback functions to handle the type of data structure that it is using. These callback
functions must recognize the type of data structure in value without being told by the
Cert-C function that passes the value to the callback. An application can use the
AllocAndCopy feature to insert application-defined values into a list object.

The C_AddListObjectEntry and C_InsertListObjectEntry functions use the
LIST_OBJ_ENTRY_HANDLER structure as a value for their handler input fields.

For more information about the LIST_OBJ_ENTRY_HANDLER, see the API Reference. For
an example of how to use the LIST_OBJ_ENTRY_HANDLER, see “Creating and
Enumerating a List of User-Defined Elements” on page 97.

Other Usage
The PKCS12BagEntryHandler handler is a LIST_OBJ_ENTRY_HANDLER. You can use it to
create a LIST_OBJ that contains a list of PKCS12_BAG structures. Use these structures
with the C_ReadFromPKCS12 and C_WritetoPKCS12 functions.
8 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Using the List Object Entry Handler
The PKI_SP_DATA_HANDLER handler is a LIST_OBJ_ENTRY_HANDLER. Cert-C uses it to
allocate and copy service-provider-specific data, and associate it with a PKI message
object. Use these structures with the C_SetPKIProviderData function.
C h a p t e r 5 C e r t - C C o n t e x t a n d S e r v i c e s 83

Cert-C Services
Cert-C Services
The Cert-C SDK provides PKI services to your application through its API; this API
layer is the primary part of the Cert-C architecture with which your application needs
to interface. This API can be categorized into two types of APIs. The first type of API
gives your application an interface to the internal Cert-C library, where standard PKI
functionality is provided. The second type of API provides additional PKI
functionality, interfacing with service providers. This last type of API enables your
application to select a Cert-C service provider, a third-party service provider, or a
service provider created by you, which provides greater flexibility.

When your application uses a service provider, your application may need to know
information about the selected service provider. Also, not all service providers are
linked to an API function call. Cert-C is designed with a context management
component to assist applications in specifying and managing the numerous
parameters and service providers.

Surrender Context
The surrender context, A_SURRENDER_CTX, provides a way for you to halt a Cert-C
function or to obtain cycles to perform other tasks. It contains a pointer to an
application-specific callback function (Surrender) that Cert-C can use as its surrender
function, and a pointer to application-specific information (handle).

To supply a Surrender function, you must register a surrender service provider when
you initialize the Cert-C context. If you use the Cert-C Text Surrender service
provider, it supplies a default Surrender function. For information about using the
Cert-C Text Surrender service provider, see the “Service Provider” section of the API
Reference.

Registering a Surrender Context
Before calling any other Cert-C function, a typical application initializes the
A_SURRENDER_CTX value. Each A_SURRENDER_CTX value can specify a different
Surrender callback function and a different handle.

To substitute an application-defined Surrender function for the default Surrender
function, you can call the C_GetSurrenderCtx function, which returns a pointer to the
A_SURRENDER_CTX structure. (If a text-surrender service provider is not registered, the
8 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Cert-C Service Providers
C_GetSurrenderCtx function returns a NULL_PTR.)

Cert-C Service Providers
Cert-C provides the following types of services:

• System
• Text Surrender
• Status Log
• Stream
• Database
• Cryptographic
• Certificate Path Processing
• Certificate Revocation Status
• PKI Certificate Management

For more information about the specifics of each Cert-C service provider, see the
“Service Provider” section of the API Reference.

System
Use the Cert-C System service provider to manage memory, operate on memory
blocks and strings, and obtain the time with platform-specific library functions that
are modeled after conventional C library functions. These functions are called directly
by Cert-C. The Cert-C System service provider implements an interface between
standard system calls required by the Cert-C library and platform-specific system
calls. There is only a single service provider for this service, and you do not need to
register it.

Text Surrender
Use the Cert-C Text Surrender service provider to surrender control of a Cert-C
function to your application. Only one surrender service provider can be registered at

#include "textsurr.h"

A_SURRENDER_CTX *surrCtx = (A_SURRENDER_CTX *)NULL_PTR;

surrCtx = C_GetSurrenderCtx (ctx);
C h a p t e r 5 C e r t - C C o n t e x t a n d S e r v i c e s 85

Status Log
a given time. The Cert-C Text Surrender service provider is the Cert-C
implementation of the surrender service provider; it is suitable for use in console,
command-line, or other text-mode applications.

Status Log
Use the Cert-C Status Log service provider to append an application’s error, warning,
or information status message to its status-log file. The Cert-C Status Log service
provider is the Cert-C implementation of the status log service provider. If more than
one status log service provider is registered, the application’s status message is
appended to all of the status log service provider’s log files.

Stream
Use the Cert-C Stream service provider to implement a stream to read from and write
to a file using standard C file input and output functions. The Cert-C Stream service
provider is the Cert-C implementation of the stream service provider. It supports a
subset of the possible Cert-C supported IO_* flag combinations. For more
information on the IO_* flags, see the C_OpenStream function in the API Reference.

Database
Use the Cert-C database service providers to store certificates, CRLs, and keys. Cert-C
includes the following six Cert-C database service providers:

• Cert-C Default Database service provider
The Cert-C Default Database service provider provides a persistent local
database. Database entries are stored as records in files in the local file system.
The database is implemented using an embedded, high-performance database
engine suitable for managing small to medium numbers of entries—for example,
up to tens of thousands of entries.

• Cert-C In-Memory Database service provider
The Cert-C In-Memory Database service provider stores entries in list objects that
are in memory. The application can supply the lists used by the database, or the
database can create temporary lists that are automatically destroyed when the
service provider is unregistered. Databases of this type can be useful in caching or
in processing lists of certificates, CRLs, private-keys, or PKCS #10 objects returned
by other Cert-C functions.
8 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Cryptographic
• Cert-C LDAP Database service provider
The Cert-C LDAP Database service provider retrieves certificates and CRLs from
an LDAP repository. You can make an LDAP repository available as a database
service provider. Registered database service providers are searched in the order
established during the registration of the database service provider.

• Cert-C CryptoAPI Database service provider
The Cert-C CryptoAPI Database service provider translates Cert-C database
function calls into CryptoAPI function calls. This enables the sharing of keys and
certificates among applications written to the Cert-C API and applications written
to CryptoAPI. This service provider relies upon Microsoft Windows APIs, so it is
available only on Microsoft Windows platforms.

• Cert-C SCEP Database service provider
The Cert-C SCEP Database service provider supports the retrieval of CA and RA
certificates, and possibly certificate chains leading to them, from network devices
such as routers. RSA Security developed this service provider using the interfaces
specified in the Cisco System’s Simple Certificate Enrollment Protocol specification.
This service provider is suitable for network devices that may need to retrieve
trusted-root certificates for use with an SCEP PKI service provider when an LDAP
server is not available. The Cert-C SCEP Database service provider does not
support any SCEP functionality other than CA and RA certificate retrieval.
However, see the Cert-C SCEP PKI service provider for other supported SCEP
certificate management functionality.

• Cert-C PKCS #11 Database service provider
The Cert-C PKCS #11 Database service provider implements the database
interface to the object handling services of a PKCS #11 v2.x library and token—
supporting authenticated read-write access to certificates and private keys.
Additional PKCS #11 functionality can be provided through other service
providers—for example, cryptographic services can be provided through a
cryptographic service provider.

Cryptographic
Use the Cert-C Default Cryptographic service provider to access the RSA BSAFE
Crypto-C APIs to provide your application with the necessary functionality to
support client cryptographic function calls. You can register or initialize only one
cryptographic service provider at a given time.

This service provider supports the Intel Hardware Random Number Generator, the
Microsoft CryptoAPI services, and now, direct access to third party PKCS #11
C h a p t e r 5 C e r t - C C o n t e x t a n d S e r v i c e s 87

Certificate Path Processing
libraries and tokens (and the use of RSA and DSA private keys on those tokens). See
the certc_27_releasenotes.pdf file for a list of the devices that Cert-C supports. For
a list of the cryptograpic operations that Cert-C supports, see the “Service Provider”
section of the API Reference. Depending on the type of cryptographic service you
require, you must initialize the Cert-C Default Cryptographic service provider with a
particular initialization function. For more information on the two Cert-C Default
Cryptographic service provider initialization functions, see the “Service Provider”
section of the API Reference.

Certificate Path Processing
Use the Cert-C Certificate Path Processing service provider to implement certificate
path processing. This service provider provides certificate path processing according
to the profiles outlined in X.509 v1, RFC 2459, and RFC 3280.

Certificate Revocation Status
Use the Cert-C Certificate Revocation Status service providers to obtain status on a
certificate. Cert-C includes the following two Cert-C certificate revocation status
service providers:

• Cert-C CRL Revocation Status service provider
Use the Cert-C CRL Revocation Status service provider to check the validity of a
certificate against a set of CRLs.

• Cert-C OCSP Revocation Status service provider
Use the Cert-C OCSP Revocation Status service provider to check the validity of a
certificate without requiring CRLs. This service provider uses the OCSP, and is
suitable for client applications that require a method for getting more timely
certificate revocation status information than a CRL can usually provide.

PKI Certificate Management
Use the Cert-C PKI service providers to request a certificate, to request a key update,
to request a certificate revocation, and to archive a key. Cert-C includes the following
four Cert-C PKI service providers:

• Cert-C CRS PKI service provider
Use the Cert-C CRS PKI service provider to send certificate requests and retrieve
certificate responses using a CA that implements the CRS protocol. This service
provider implements CRS certificate request and requested certificate pickup
functionality according to the VeriSign CRS Profile Specification, which is available
8 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Certificate Management
directly from VeriSign. Currently, only certificate requests are implemented by
this service provider. Other CRS request types, such as certificate revocation and
certificate lookup, are not supported.

• Cert-C SCEP PKI service provider
Use the Cert-C SCEP PKI service provider to send certificate requests and retrieve
certificate responses using a CA that implements Cisco Systems’ Simple Certificate
Enrollment Protocol certificate request mechanism. SCEP’s primary use is for
requesting and retrieving IPSec certificates. This service provider supports only
certificate requests. Currently, no other SCEP request types are supported, such as
certificate or CRL lookup. These functions may be achieved through the use of the
Cert-C Database LDAP service provider. Client bootstrapping functionality—
namely, the acquisition of CA root certificates—is implemented by the SCEP
database service provider.

• Cert-C CMP PKI service provider
Use the Cert-C CMP PKI service provider to send certificate requests and retrieve
certificate responses using a CA that implements the CMP protocol. This service
provider implements the CMP initialization certificate request and response
messages (ir/ip) and the certificate request and response messages (cr/cp)
according to the profiles outlined in RFC 2510 and RFC 2511 for CMP version 1
messages, and draft-ietf-pkix-rfc2510bis-06.txt and
draft-ietf-pkix-rfc2511bis-04.txt for CMP version 2 messages.
C h a p t e r 5 C e r t - C C o n t e x t a n d S e r v i c e s 89

9 0

Chapter 6

Using the List Object
List Object
Use the LIST_OBJ object to store and pass a collection of abstract data types, including
types defined by Cert-C and types defined by your application. The list object is a
generic container for multiple values; the values can be of the same type or of
different types. For example:

• Cert-C list objects—Cert-C uses a list object to store an extension’s value list;
it also uses a list object to store extension values that consist of multiple
components, such as the Certificate Policies extension.

• Application-defined list objects—An application can use a list object as a
container for any kind of value; each value can even be defined by a different data
structure.

Cert-C provides a number of functions that you can use to maintain list objects of
common Cert-C data types. For example, it provides a set of functions that you can
use to maintain list objects that contain ITEM structures, CERT_OBJ objects, and CRL_OBJ
objects; these functions are declared in the certlist.h header file. As another
example, there is a set of functions in the cms.h header file to maintain list objects that
contain RECIPIENT_INFO structures. Before you create any functions to manage lists of
Cert-C objects or structures, check the description of the object or structure to see
whether the list management functions are already provided by Cert-C.
91

List-Object Entry Handler
List-Object Entry Handler
An application can use a LIST_OBJ as a container for any type of value. It is also
possible to use different data structures for each value, provided that the
LIST_OBJ_ENTRY_HANDLER is set up correctly.

The application can use the LIST_OBJ_ENTRY_HANDLER to store any kind of
user-defined data in the LIST_OBJ, while the library has no knowledge of the required
data structure. Since an application knows exactly what kind of data structure is
required, it must reflect this requirement by setting up the AllocAndCopy and
Destructor callbacks appropriately.

See the API Reference entry for the LIST_OBJ_ENTRY_HANDLER structure for a
description of the AllocAndCopy and Destructor callbacks.

The LIST_OBJ_ENTRY_HANDLER.AllocAndCopy function is called upon to make a copy of
the element that a user wants to add an element to a list object. The
C_AddListObjectEntry takes in a pointer to a LIST_OBJ_ENTRY_HANDLER as its fourth
argument. This list-object entry handler must correspond to the type of the entry
given as the second argument to C_AddListObjectEntry. Routines such as
C_AddCertToList or C_AddRecipientToList rely upon LIST_OBJ_ENTRY_HANDLERS
defined in the toolkit for those particular objects (C_CertEntryHandler and
C_RecipientInfoEntryHandler respectively, for example).

The LIST_OBJ_ENTRY_HANDLER.Destructor function is called upon to zeroize sensitive
data and free memory allocated by the LIST_OBJ_ENTRY_HANDLER.AllocAndCopy
function.

List-Object Functions
You must use a Cert-C function to view or modify information in a LIST_OBJ object.
For application-defined data types, you must provide a LIST_OBJ_ENTRY_HANDLER. You
cannot assume that the LIST_OBJ object points to any specific information. Some
examples of the functions that Cert-C provides for adding an entry, deleting an entry,
searching for an entry, and so forth, are given in the following tables.
9 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

List-Object Functions
Create, Reset, or Destroy LIST_OBJ Functions

Set or Modify LIST_OBJ Functions

Function Description

C_CreateListObject Creates a list object.

C_DestroyListObject Destroys the list object, freeing all occupied memory.

C_ResetListObject Destroys all entries in the list object, freeing all memory
occupied by these entries.

Function Description

C_AddCertToList Adds a copy of a CERT_OBJ to the list object.

C_AddCRLToList Adds a copy of a CRL_OBJ to the list object.

C_AddItemToList Adds a copy of an ITEM to the list object.

C_AddPrivateKeyToList Adds a copy of a private-key object to the list object.

C_AddRecipientToList Adds a copy of a RECIPIENT_INFO to the list object.

C_AddSignerToList Adds a copy of a SIGNER_INFO to the list object.

C_AddUniqueCertToList Adds a copy of a CERT_OBJ only if it is not already in the
list.

C_AddUniqueCRLToList Adds a copy of a CRL_OBJ only if it is not already in the
list.

C_AddUniqueItemToList Adds a copy of an ITEM only if it is not already in the list.

C_AddUniqueRecipientToList Adds a copy of a RECIPIENT_INFO only if it is not
already in the list.

C_AddUniqueSignerToList Adds a copy of a SIGNER_INFO only if it is not already
in the list.

C_AddListObjectEntry Adds an entry to the list object.

C_InsertListObjectEntry Inserts an entry to the list object at a given position.

C_DeleteListObjectEntry Destroys an entry in the list object, freeing all memory
occupied by the entry.
C h a p t e r 6 U s i n g t h e L i s t O b j e c t 93

Creating and Enumerating a List of Objects
Get LIST_OBJ Functions

Creating and Enumerating a List of Objects
The following list object examples create a list of certificate objects and retrieve entries
from a list of certificate objects. Other objects like the CERT_OBJ, which are opaque
pointers, can be handled similarly. You do not need to define a
LIST_OBJ_ENTRY_HANDLER for certificate objects because this handler is already
defined in the toolkit. LIST_OBJ_ENTRY_HANDLER is used when you call
C_AddCertToList.

Creating a List of Certificates
To add a CERT_OBJ certObj into a list, use the C_AddCertToList function.

Now the certList has a copy of the certObj and its contents. To free the elements in
the list object and dispose of the list object, when it is no longer needed, use the
C_DestroyListObject function.

Function Description

C_GetListObjectCount Gets the number of entries in the list object.

C_GetListObjectEntry Gets a specific entry from the list object.

CERT_OBJ certObj;
LIST_OBJ certList = (LIST_OBJ)NULL_PTR;

status = C_CreateListObject (&certList);
if (status != 0)
 goto CLEANUP;

status = C_AddCertToList (certList, certObj, (unsigned int *)NULL_PTR);
if (status != 0)
 goto CLEANUP;

C_DestroyListObject (&certList);
9 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Enumerating a List of Objects
The call to C_AddCertToList is equivalent to the following:

Enumerating a List of Objects
To enumerate each entry in a list object of certificate objects, you must first find out
how many entries there are in the list. To count the entries in the list object, use the
C_GetListObjectCount function.

Using the C_GetListObjectEntry function, you can now use the value in numEntries
to iterate through the elements of the list.

status = C_AddListObjectEntry (certList, (POINTER)certObj,
 (unsigned int*)NULL_PTR, &C_CertEntryHandler);

unsigned int numEntries = 0;

status = C_GetListObjectCount (certList, &numEntries);
if (status != 0)
 goto CLEANUP;

POINTER entry = NULL_PTR;

for (i = 0; i < numEntries; i++) {
 status = C_GetListObjectEntry (certs, i, &entry);
 if (status !=0)
 goto CLEANUP;

 DoSomethingToTheCert ((CERT_OBJ)entry);
}

C h a p t e r 6 U s i n g t h e L i s t O b j e c t 95

Creating and Enumerating a List of Structures
Creating and Enumerating a List of
Structures
The following list object examples create a list of ITEMs and retrieve entries from a list
of ITEMs. C_AddItemToList refers to an internal C_ItemEntryHandler list-object entry
handler so you do not need to define a list-object entry handler.

Creating a List of ITEMs
To add an ITEM into a list, use the C_CreateListObject function.

Now the itemList has a copy of the ITEM and its contents. To free the elements in the
list object and dispose of the list object, when it is no longer needed, use the
C_DestroyListObject function.

The call to C_AddItemToList is equivalent to the following:

Note: The difference between this example and the “Create a list of certificates”
example is that the CERT_OBJ is already a pointer. The actual structure that lies
behind the CERT_OBJ object (defined to be a POINTER) is not visible to the
caller, whereas the fields of the ITEM structure are visible to the caller.

ITEM item;
LIST_OBJ itemList = (LIST_OBJ)NULL_PTR;

status = C_CreateListObject (&itemList);
if (status != 0)
 goto CLEANUP;

status = C_AddItemToList (itemList, &item, (unsigned int *)NULL_PTR);
if (status != 0)
 goto CLEANUP;

C_DestroyListObject (&itemList);

status = C_AddListObjectEntry (itemList, (POINTER)&item,
 (unsigned int *)NULL_PTR,
 &C_ItemEntryHandler);
9 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Enumerating a List of ITEMs
Enumerating a List of ITEMs
To enumerate each entry in a list object of ITEMs, you must first find out how many
entries there are in the list. To count the entries in the list object, use the
C_GetListObjectCount function.

Using the C_GetListObjectEntry function, you can now use the value in numEntries
to iterate through the elements of the list.

Creating and Enumerating a List of
User-Defined Elements
To create a list of user-defined elements, you must first create your own list-object
entry handler. In this example, you create list objects containing structures of type
USER_TYPE. Begin by creating your own routines (using the callbacks in the
LIST_OBJ_ENTRY_HANDLER as examples) that the list object will use to copy the data in a
USER_TYPE structure. You also use these routines to free the data allocated when
making the copy of the data.

unsigned int numEntries = 0;

status = C_GetListObjectCount (itemList, &numEntries);
if (status != 0)
 goto CLEANUP;

POINTER entry = NULL_PTR;

for (i = 0; i < numEntries; i++) {
 status = C_GetListObjectEntry (itemList, i, &entry);
 if (status != 0)
 goto CLEANUP;

 DoSomethingToTheItem ((ITEM *)entry);
}

C h a p t e r 6 U s i n g t h e L i s t O b j e c t 97

Creating and Enumerating a List of User-Defined Elements
The function declarations and list object entry handler are as follows:

AllocAndCopyMyData takes a pointer to data, in this example a USER_TYPE structure.
You allocate a new USER_TYPE structure, and the necessary fields in that structure, so
that you can make a deep copy of the original data. Then you modify the given
pointer so that a pointer to the newly allocated USER_TYPE structure is returned.

FreeMyData completely frees all of the buffers allocated by AllocAndCopyMyData,

int AllocAndCopyMyData (POINTER *copiedData, POINTER data);
void FreeMyData (POINTER data);

/* Application list object handler */
LIST_OBJ_ENTRY_HANDLER myDataHandler = {
 AllocAndCopyMyData, FreeMyData
};

int AllocAndCopyMyData (POINTER *copiedData, POINTER data)
{
 USER_TYPE *newData; /* USER_TYPE is a user-defined data type */

 /* Allocate our new USER_TYPE buffer */
 newData = (USER_TYPE *)T_malloc (sizeof (*newData));
 if (newData = (USER_TYPE *)NULL_PTR)
 return (E_ALLOC);

 /* Copy information from data to newData. CopyMyData is a user-defined
 function, and allocates additional space for fields if needed */
 CopyMyData (newData, (USER_TYPE *)data);

 /* At this point, we have finished a deep copy of the USER_TYPE
 information pointed to by data into newData. Now we set the
 copiedData pointer to point to newData, returning a pointer
 to the newData we allocated for the caller. */
 *copiedData = (POINTER)newData;

 /* Return 0 to indicate success */
 return 0;
}

9 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating and Enumerating a List of User-Defined Elements
zeroizing out any buffers that are defined to contain sensitive data.

void FreeMyData (POINTER copiedDataPtr)
{
 if (copiedDataPtr == NULL_PTR)
 return;

 /* First, de-allocate all the allocated buffers in copiedDataPtr, */
 /* if any exist. The FreeData function frees the data allocated by */
 /* CopyMyData, which is called by AllocAndCopyMyData. */
 FreeData ((USER_TYPE *)copiedDataPtr);

 /* Now free the actual data buffer itself. */
 T_free (copiedDataPtr);

 return;
}

C h a p t e r 6 U s i n g t h e L i s t O b j e c t 99

1 0 0

Chapter 7

Using the Name and Attributes
Objects
This chapter presents the NAME_OBJ and ATTRIBUTES_OBJ objects and their related
APIs. You can use these APIs to create, manipulate, or destroy these objects. This
chapter also includes examples on how to use these objects and APIs.

When creating a certificate, you need a way to represent the certificate subject’s
information. This information is called a distinguished name (DN), as defined in the
X.500 standard. A DN should uniquely identify each entity. Cert-C provides the
NAME_OBJ to represent a DN. For example, you can use the NAME_OBJ to parse a
subject’s DN, or it can be used, along with other elements, to create a certificate
request.

The X.509 standard defines what information can be contained in a certificate.
However, the subject might want to associate additional information with their
certificate. Sometimes this information can be included in an extension. For more
information about extensions, see chapter 15.

Cert-C provides the ATTRIBUTES_OBJ object to represent and pass extra information
about the certificate subject, for example, in a certification request. Usually, this extra
information is not allowed in a DN.

The attributes object is a general mechanism for holding attribute types and values.
For example, you can use it in a PKCS #10 certificate request to represent information
the requestor would like associated with the certificate. The attributes object can also
be used in PKCS #10 messages and PKCS #7 Signed-Data messages.
10 1

Name Object
Name Object
Cert-C uses a NAME_OBJ object to represent the names of entities involved in a PKI. A
name object contains a DN, as defined in the X.500 standard. A DN should uniquely
identify each entity. An X.500-defined DN specifies a path through an X.500-defined
directory tree.

The name on an X.509 certificate is actually a DN, which is itself a set of Relative
Distinguished Names (RDNs), which in turn is a set of Attribute Value Assertions
(AVAs). Finally, an AVA is made up of an attribute type and an attribute value.
Figure 7-1 shows the different levels of a DN.

Figure 7-1 Breakdown of a Distinguished Name

Each level involves one or more AVAs; the AVA list indicates whether successive
AVAs are part of the same level or different levels. There is no significance to the
order of AVAs within a level. Furthermore, some environments require that an AVA
of any type only appear once within a level. However, Cert-C does not enforce this
requirement.

When building a DN, you add information to a name object. Then you add more and
more until you have entered all the information you want to be part of the name. Each
unit of information you add is a value of a particular type, a type permitted as part of
a name. When part of a DN, this value of a particular type is known as an AVA. If this
value of a particular type were not part of a DN, it would be known as an attribute.

The DN can be extracted in two forms—as a DER encoding or as a list of AVAs. The

Distinguished Name

Relative Distinguished Name

Relative Distinguished Name

Relative Distinguished Name

AVA
Type

Value

AVA

AVA
1 0 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Name-Object Functions
two forms provide equivalent information. The DER encoding is a string of unsigned
characters that represents the path; the AVA list contains the AVAs that define each
level traversed by the path through the tree.

Name-Object Functions
You must use a Cert-C function to view or modify information in a NAME_OBJ object.
You cannot assume that the NAME_OBJ object points to any specific information. Some
examples of the functions that Cert-C provides to manipulate a name object are listed
in the following tables.

Create, Reset, or Destroy NAME_OBJ Functions

Set or Modify NAME_OBJ Functions

Get NAME_OBJ Functions

Function Description

C_CreateNameObject Creates a new name object.

C_DestroyNameObject Deletes the name object and de-allocates all memory associated
with it.

C_ResetNameObject Deletes all the name AVA entries in the name object and frees all
the associated memory.

Function Description

C_SetNameBER Modifies the value of a name to a given BER encoding.

Function Description

C_GetNameDER Gets a pointer to the DER encoding that represents
the value of the name.

C_GetNameString Gets a NUL-terminated UTF8-string form of the
name object, conforming to RFC 2253, in the order
of least-significant RDN first.
C h a p t e r 7 U s i n g t h e N a m e a n d A t t r i b u t e s O b j e c t s 10 3

AVA-List Functions
AVA-List Functions
Every DN is comprised of one or more levels and each level can have one or more
AVAs. Each AVA has a type, such as AT_ORGANIZATION, and a value, such as the name
of the organization. The value also has a tag, which is usually VT_PRINTABLE_STRING;
but the value can have a different tag if it can be represented in a form other than a
printable string.

A typical application calls C_GetNameAVACount to get the number of AVAs in an AVA
list. Next the application calls C_GetNameAVA to obtain each AVA in a name that is
being displayed. Then the application calls C_AddNameAVA to construct a new name or
add lower levels to an existing name prefix.

Some of the functions that Cert-C provides to access or modify a name object’s AVA
list are listed in the following table.

Attribute Types and Constraints
Cert-C defines a number of attribute types. For some attribute types, Cert-C places
some constraints on the corresponding attribute values and their tags. The attribute
types and lengths (given as variables that the application can reference), the attribute
descriptions, and the attribute value and length constraints are listed in the “Attribute
Types and Constraints” section of the API Reference.

C_GetNameStringReverse Gets a NUL-terminated UTF8-string form of the
name object, conforming to RFC 2253, in the order
of most-significant RDN first (reverse order to
C_GetNameString).

C_IsSubjectSubordinateToIssuer Checks whether the subject is subordinate to the
issuer.

Function Description

C_AddNameAVA Adds an attribute-value assertion to a name object’s AVA list.

C_GetNameAVA Gets a specific attribute-value assertion from a name object’s AVA list.

C_GetNameAVACount Gets the number of attribute-value assertions in a name object’s AVA
list.

Function Description
1 0 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a Name Object
Creating a Name Object
This example creates a name object and adds DN information to the name object.

You do not need to use the CERTC_CTX context when creating a name object. You can
look at the samples/name/name.c sample program and use it to experiment with
creating and parsing name objects.

Note: For an example of how to retrieve name information from a NAME_OBJ, see
“Retrieving Name-Object Information” on page 216.

Step 1: Create a name object
To create a name object you use the C_CreateNameObject function. For more
information on C_CreateNameObject, see the API Reference.

Using the C_CreateNameObject function, you declare a variable to be NAME_OBJ and
pass its address as the argument. The return value of this routine is a 0 (zero) for
success and a non-zero error code when something goes wrong. Any clean-up code
always executes, whether an error occurs or not. You should initialize an object to
NULL_PTR; if there is an error before an object has the chance to be created, the clean-up
code acts on a NULL_PTR and does not do any damage.

Step 2: Enter the name information
Now that you have created a name object, you use C_AddNameAVA to fill it with the

int C_CreateNameObject (
 NAME_OBJ *nameObject /* (out) New name object */
);

int status;

NAME_OBJ requestorName = (NAME_OBJ)NULL_PTR;

status = C_CreateNameObject (&requestorName);
if (status != 0)
 goto CLEANUP;
...
CLEANUP;
...
C h a p t e r 7 U s i n g t h e N a m e a n d A t t r i b u t e s O b j e c t s 10 5

Creating a Name Object
proper information. For more information on C_AddNameAVA, see the API Reference.

The first argument is the name object you just created. The second and third
arguments are an attribute type and its length. An AVA consists of a type and a value.
The type describes what kind of information this AVA contains. The X.520 standard
lists official attributes such as COUNTRY, ORGANIZATION, and COMMON_NAME. You can find
some of the most common attributes in the API Reference. Cert-C provides OIDs
(object identifiers) for these attributes along with their lengths.

The next two arguments refer to a value. The value of the AVA is the information
itself. The valueTag states which character set is used for the attribute value. For more
information on the character sets supported in Cert-C, see “Character Sets” on
page 47. Cert-C defines some commonly used attributes and also defines which
valueTag to use. For more information on these attributes and their value tags, see
“Attribute Types and Value Tags” section in the API Reference.

The newLevel argument is a flag to tell Cert-C when you are beginning a new RDN.
Cert-C differentiates between RDNs by starting a new level. You call C_AddNameAVA
once for each AVA. When you set the newLevel flag to a non-zero value, you are
beginning a new level, or RDN. You must add each level in order, beginning at the
top. Setting newLevel to 0 (zero) means you are still in the same RDN. Figure 7-2 shows

int C_AddNameAVA (
 NAME_OBJ nameObject, /* (in/out) Name object */
 unsigned char *type, /* Attribute type */
 unsigned int typeLen, /* Length of attribute type */
 int valueTag, /* Tag for the attribute value */
 unsigned char *value, /* Attribute value */
 unsigned int valueLen, /* Length of attribute value */
 int newLevel, /* Flag if AVA starts new level */
 unsigned int *index /* (out) Index to AVA */
);
1 0 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a Name Object
the structure of a DN.

Figure 7-2 Distinguished Name with Three RDNs

When you begin a new RDN depends on your organization’s structure. Country is an
X.500-defined RDN. Other than country, you generally begin a new level when the
information in the AVA is different for each certificate requester. For example, Figure
7-2 shows the DN is comprised of the employee’s name, the name of the company,
and the company’s address. If a company has offices throughout the US; then not
every employee will have the same address. Therefore, the company name and the
address will be on two separate RDNs. However, you may want one single company
address on each certificate, regardless of where the employee goes to work. In this
case, the company name and address is the same for each employee, so they can make
up one RDN.

The last argument is an address of an unsigned int variable. Cert-C goes to that
address and write an index. Each AVA has an index number. If you want to save that
value for reference, pass a pointer to an unsigned int. If not, pass a properly cast

(level 1)
country name = US

|
(level 2)

organization name = RSA Security, Inc.
street address = 2955 Campus Drive

locality = San Mateo
state = CA

postal code = 94403
|

(level 3)
common name = T. Lee

title = Cryptographer
C h a p t e r 7 U s i n g t h e N a m e a n d A t t r i b u t e s O b j e c t s 10 7

Creating a Name Object
NULL_PTR.

 char *orgName = “RSA Security Inc.”;
 char *streetAddress = “2955 Campus Dr., Suite 400”;
 char *locality = “San Mateo”;
 char *state = “CA”;
 char *zipCode = “94403”;
 char commonName[80], title[80], employeeNumber[8];

 status = C_AddNameAVA (requestorName, AT_COUNTRY, AT_COUNTRY_LEN,
 VT_PRINTABLE_STRING, “US”, COUNTRY_LEN, 1,
 (unsigned int *)NULL_PTR);

 if (status != 0)
 goto CLEANUP;

 status = C_AddNameAVA (requestorName, AT_ORGANIZATION,
 AT_ORGANIZATION_LEN, VT_PRINTABLE_STRING,
 (unsigned char *)orgName, T_strlen (orgName),
 1, (unsigned int *)NULL_PTR);

 if (status != 0)
 goto CLEANUP;

 status = C_AddNameAVA (requestorName, AT_LOCALITY, AT_LOCALITY_LEN,
 VT_PRINTABLE_STRING, (unsigned char *)locality,
 T_strlen (locality), 0, (unsigned int *)NULL_PTR);

 if (status != 0)
 goto CLEANUP;

 status = C_AddNameAVA (requestorName, AT_STATE, AT_STATE_LEN,
 VT_PRINTABLE_STRING, (unsigned char *)state,
 T_strlen (state), 0, (unsigned int *)NULL_PTR);

 if (status != 0)
 goto CLEANUP;

 status = C_AddNameAVA (requestorName, AT_POSTAL_CODE, AT_POSTAL_CODE_LEN,
 VT_PRINTABLE_STRING, (unsigned char *)zipCode,
 T_strlen (zipCode), 0, (unsigned int *)NULL_PTR);
1 0 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a Name Object
Either the certificate requestor or the CA may want additional information about the
subject to be added to the certificate; for example, an employee number. However,
because an employee number is not an official X.520 attribute, it does not appear in
the subject’s DN. Cert-C enables you to add additional information about the subject
with the attributes object. In this case, you must create a user-defined name attribute
to contain the employee number.

For more information on the attributes object and creating user-defined attributes, see
“Attributes Object” on page 112.

Step 3: Perform operations
In this example, you do not perform any sign or verify operations.

Step 4: Retrieve the name information in DER format
Now you can retrieve the DER encoding of the name object using the C_GetNameDER

 if (status != 0)
 goto CLEANUP;

 puts (“Enter employee name.”)
 fgets ((char *)commonName, sizeof (commonName), stdin);

 status = C_AddNameAVA (requestorName, AT_COMMON_NAME, AT_COMMON_NAME_LEN,
 VT_PRINTABLE_STRING, (unsigned char *)commonName,
 T_strlen (commonName), 1, (unsigned int *)NULL_PTR);

 if (status != 0)
 goto CLEANUP;

 puts (“Enter employee title.”)
 fgets ((char *)title, sizeof (title), stdin);

 status = C_AddNameAVA (requestorName, AT_TITLE, AT_TITLE_LEN,
 VT_PRINTABLE_STRING, (unsigned char *)title,
 T_strlen (title), 0, (unsigned int *)NULL_PTR);

 if (status != 0)
 goto CLEANUP;

 puts (“Enter employee number.”)
 fgets ((char *)employeeNumber, sizeof (employeeNumber), stdin);
C h a p t e r 7 U s i n g t h e N a m e a n d A t t r i b u t e s O b j e c t s 10 9

Creating a Name Object
function. Once you retrieve the DER encoding, you can send this encoding to anyone
who can read BER-encoded information, whether they use Cert-C or not. You can also
save this name information in a file or database. You may want to do this to reuse it
later to build a certificate request, rather that re-entering the information.

Using the C_GetNameDER function, you give Cert-C a name object, the address of a
pointer, and the address of an unsigned int. Cert-C places at the addresses a pointer
to the DER-encoding of the subject name and length. The memory that the pointer to
the DER-encoding points to belongs to Cert-C. You do not need to allocate or free that
memory. Also, you should not attempt to adjust the data yourself. The information
remains unchanged until you call a Cert-C routine that modifies or destroys the name
object. To save this information, you must copy it into a file or your own buffer.

The RSA_WriteDataToFile routine is not a Cert-C routine; it is a demo utility routine.
For more information about Cert-C demo utilities, see the “Utilities” chapter in the
Advanced Developer’s Guide. You can use RSA_WriteDataToFile to write binary data to
a file.

Step 5: Destroy the name object
At this stage, you might want to keep and reuse the name object. For example, you
will need to use a name object in some of the examples presented in the following

int C_GetNameDER (
NAME_OBJ nameObject, /* Name object */
unsigned char **der, /* (out) DER-encoded name */
unsigned int *derLen /* (out) Length of DER-encoded name */
);

unsigned char *nameDER;
unsigned int nameDERLen;

status = C_GetNameDER (requestorName, &nameDER, &nameDERLen);
if (status != 0)
 goto CLEANUP;

status = RSA_WriteDataToFile
 (nameDER, nameDERLen,
 "Enter name of file to store name object binary");
if (status != 0)
 goto CLEANUP;
1 1 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a Name Object
chapters. However, if you no longer need the name object, making sure you have
saved any information you need later, then you destroy it now. This frees up any
memory allocated by Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

CLEANUP:
 C_DestroyNameObject (&requestorName);
C h a p t e r 7 U s i n g t h e N a m e a n d A t t r i b u t e s O b j e c t s 11 1

Attributes Object
Attributes Object
Cert-C uses an ATTRIBUTES_OBJ object to represent and pass extra information about
the certificate subject, for example, in a certification request. Usually, this extra
information is not allowed in a DN. The extra information may be attribute types not
allowed in a name, user-defined attribute types, or they may also be X.509 certificate
extensions.

An attribute object or set is made up of all the extra attributes associated with one
entity. Each attribute has an attribute type and one or more values. Some attribute
types, such as the time at which a message is signed, can only have one value; other
attribute types, such as a postal address, can have multiple values. There is no
significance to the order of the different attribute types in an attribute set, or to the
order of multiple values for a particular attribute type. Figure 7-3 shows a
representation of an attributes object.

Figure 7-3 An Attributes Object

You can extract an attributes set from an attributes object in either of two forms—a
DER encoding or a list of attributes. The two forms provide equivalent information.
The DER encoding is an unsigned character string that represents the attribute set.
The attributes list gives each attribute in the set one at a time.

Attributes-Object Functions
You must use a Cert-C function to view or modify information in an ATTRIBUTES_OBJ.
You cannot assume that the ATTRIBUTES_OBJ points to any specific information. Some
examples of the functions that Cert-C provides to manipulate an attributes object are

Type Type Type Type

Value Value Value Value Value Value Value

Attribute 1

Attributes Object

Attribute 2 Attribute 3 Attribute 4
1 1 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Attributes-Object Functions
listed in the following table.

Create, Reset, or Destroy ATTRIBUTES_OBJ Functions

Set or Modify ATTRIBUTES_OBJ Functions

Function Description

C_CreateAttributesObject Creates a new attributes object.

C_DestroyAttributesObject Deletes the attributes object and de-allocates all memory
associated with it.

C_ResetAttributesObject Resets an attributes object, returning the attributes object
to the state produced by calling the
C_CreateAttributesObject function.

Function Description

C_AddAttributeValueBER Adds the BER encoding of an attribute value to a
specific attribute type in an attributes object’s
attribute list.

C_AddPostalAddressValue Adds a postal-address value to a specific
postal-address attribute in the attributes object’s
attribute list.

C_AddStringAttribute Adds the contents and type tag of a specific
string-based attribute to an attributes object’s
attribute list.

C_DeleteAttributeType Deletes a specific attribute type and all its values
from an attributes object’s attributes list.

C_DeleteChallengePasswordAttrib Deletes the challenge-password attribute in the
attributes object’s attribute list.

C_DeletePostalAddressAttribute Deletes the postal-address attribute in the
attributes object’s attribute list.

C_DeleteSigningTimeAttribute Deletes the signing-time attribute in the attributes
object’s attribute list.

C_SetAttributesBER Sets an attribute object with a set of
BER-encoded attribute types and values.
C h a p t e r 7 U s i n g t h e N a m e a n d A t t r i b u t e s O b j e c t s 11 3

Attributes-Object Functions
Get ATTRIBUTES_OBJ Functions

C_SetAttributesNameValueEncoded Modifies the attributes-object value with a
URL-encoded attribute set, and enables the
separator characters in the URL encoding to be
user-defined.

C_SetAttributesURLEncoded Modifies the attributes-object value with a
URL-encoded attribute set, and uses default
values for the separator characters.

C_SetChallengePasswordAttribute Sets the value of the challenge-password
attribute in the attributes object’s attribute list.

C_SetSigningTimeAttribute Sets the value of the signing-time attribute in the
attributes object’s attribute list.

Function Description

C_GetAttributeType Gets the type of a specific attribute from an
attributes object’s attribute list.

C_GetAttributeTypeCount Gets the number of attributes in an attributes
object’s attribute list.

C_GetAttributeValueCount Gets the number of attribute values for a specific
attribute type in an attributes object’s attribute
list.

C_GetAttributeValueDER Gets the DER encoding of a specific value of a
specific attribute in an attributes object’s
attribute list.

C_GetAttributesDER Gets a pointer to the DER encoding that
represents the attribute set.

C_GetAttributesNameValueEncoded Gets the URL encoding of the attributes object’s
value, and enables the separator characters in
the URL encoding to be user-defined.

C_GetAttributesURLEncoded Gets the URL encoding of the attributes object’s
value, and uses default values for the separator
characters.

C_GetChallengePasswordAttribute Gets the value of the challenge-password
attribute in the attributes object’s attribute list.

Function Description
1 1 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Attribute Types and Constraints
Attribute Types and Constraints
Cert-C defines a number of attribute types. For some attribute types, Cert-C places
some constraints on the corresponding attribute values and their tags. The attribute
types and lengths (given as variables that the application can reference), the attribute
descriptions, and the attribute value and length constraints are listed in the API
Reference.

Creating an Attributes Object
The attributes object is a general mechanism for holding attribute types and values.
For example, you can use it in a PKCS #10 certificate request to represent information
the requestor would like associated with the certificate. The attributes object can also
be used in PKCS #10 messages and PKCS #7 Signed-Data messages.

The following attributes object example creates an attributes object and adds attribute
information to the attributes object.

Note: For an example of how to retrieve attribute information from a
ATTRIBUTES_OBJ, see “Retrieving Attributes-Object Information” on page 219.

As with the name object, you do not need to use the CERTC_CTX context when creating
an attributes object. You can look at the samples/attrib/attrib.c sample program
and use it to experiment with creating and parsing attributes objects.

Step 1: Create an attributes object
To create an attributes object you use the C_CreateAttributesObject function. For

C_GetPostalAddressValue Gets the value indexed by valueIndex in the
postal-address attribute in the attributes object’s
attribute list.

C_GetPostalAddressValueCount Gets the number of values for the postal-address
attribute in the attributes object’s attribute list.

C_GetSigningTimeAttribute Gets the value of the signing-time attribute in the
attributes object’s attribute list.

C_GetStringAttribute Gets the contents and type tag of a specific
string-based attribute in an attributes object list.

Function Description
C h a p t e r 7 U s i n g t h e N a m e a n d A t t r i b u t e s O b j e c t s 11 5

Creating an Attributes Object
more information on C_CreateAttributesObject, see the API Reference.

Using the C_CreateAttributesObject function, you declare a variable to be
ATTRIBUTES_OBJ and pass its address as the argument. The return value of this routine
is a 0 (zero) if successful and a non-zero error code when something goes wrong. Any
clean-up code always executes, whether an error occurs or not. You should initialize
an object to NULL_PTR; if there is an error before an object has the chance to be created,
the clean-up code acts on a NULL_PTR and does not do any damage.

Step 2: Enter the attributes information
Now that you have created an attributes object, you need to add attribute information
to the attributes object. You can choose to use an X.520-defined attribute. However, in
this case, you use C_AddStringAttribute to add a user-defined attribute type. The
user-defined attribute type will be for the subject’s employee number. For more
information on C_AddStringAttribute, see the API Reference.

The first argument is the attributes object that you created. The next two arguments
are the attribute’s type and length. Because this is not an X.520-defined attribute, you
define the attribute’s type. In this case, using the employeeNumber variable that you
declared in the name-object example, you set the employee number attribute type to a
string value. Since it is a string of alphanumeric characters, the valueTag can be

int C_CreateAttributesObject (
 ATTRIBUTES_OBJ *attributesObj /* (out) attributes object */
);

ATTRIBUTES_OBJ extraAttributes = (ATTRIBUTES_OBJ)NULL_PTR;

status = C_CreateAttributesObject (&extraAttributes);
if (status != 0)
 goto CLEANUP;

int C_AddStringAttribute (
 ATTRIBUTES_OBJ attributesObj, /* (in/out) attributes object */
 unsigned char *type, /* attribute type */
 unsigned int typeLen, /* length of attribute type */
 int valueTag, /* tag for the string value */
 unsigned char *value, /* string value */
 unsigned int valueLen /* length of string value */
);
1 1 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating an Attributes Object
VT_PRINTABLE_STRING. For more information on the character sets supported in
Cert-C, see “Character Sets” on page 47.

Step 3: Perform operations
In this example, you do not need to perform a sign or verify operation.

Step 4: Retrieve the attributes information in DER format
Now you can retrieve the DER encoding of the attributes object using the
C_GetAttributesDER function. Once you retrieve the DER encoding, you can send this
encoding to anyone who can read BER-encoded information, whether they use Cert-C
or not. You can also save this attributes information in a file or database. You may
want to do this to reuse it later to build a certificate request, rather that re-entering the
information.

Using the C_GetAttributesDER function, you give Cert-C an attributes object, the
address of a pointer, and the address of an unsigned int. At the addresses, Cert-C
places a pointer to the DER encoding of the attributes and the length of the
DER-encoded attributes. The memory that the pointer to the DER-encoding points to
belongs to Cert-C. You do not need to allocate or free that memory. Also, you should
not attempt to adjust the data yourself. The information remains unchanged until you
call a Cert-C routine that modifies or destroys the attributes object. To save this

unsigned char employeeNumberOid[] = "Employee Number";

status = C_AddStringAttribute (extraAttributes, employeeNumberOid,
 T_strlen (employeeNumberOid),
 VT_PRINTABLE_STRING, employeeNumber,
 T_strlen (employeeNumber));
if (status != 0)
 goto CLEANUP;

int C_GetAttributesDER (
 ATTRIBUTES_OBJ attributesObj, /* Attributes object */
 unsigned char **der, /* (out) DER-encoded attributes */
 unsigned int *derLen /* (out) Length of DER-encoded attr */
);
C h a p t e r 7 U s i n g t h e N a m e a n d A t t r i b u t e s O b j e c t s 11 7

Creating an Attributes Object
information, you must copy it into a file or your own buffer.

The RSA_WriteDataToFile routine is not a Cert-C routine; it is a demo utility routine.
For more information about Cert-C demo utilities, see the “Utilities” chapter of the
Advanced Developer’s Guide. You can use RSA_WriteDataToFile to write binary data to
a file.

Step 5: Destroy the attributes object
At this stage, you might want to keep and reuse the attributes object. For example,
you will need to use an attributes object in some of the examples presented in the
following chapters. However, if you no longer need the attributes object, make sure
you have saved any information you need later, then destroy it now. This frees up any
memory allocated by Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

unsigned char *attributesDER;
unsigned int attributesDERLen;

status = C_GetAttributesDER (extraAttributes, &attributesDER,
 &attributesDERLen);

if (status != 0)
 goto CLEANUP;

status = RSA_WriteDataToFile
 (attributesDER, attributesDERLen,
 "Enter name of file to store attributes object binary");
if (status != 0)
 goto CLEANUP;

CLEANUP:
 C_DestroyAttributesObject (&extraAttributes);
1 1 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 8

Creating a Certificate Request
In this chapter, you will learn how to use Cert-C to create a certificate request. Your
application can use this feature to create certificate requests suitable for presenting to
another application, for example a CA, that fulfills certificate requests.

Cert-C provides two ways for you to create a certificate request. You can create a
PKCS #10 certificate request or you can create a PKI certificate request message using
one of the Cert-C PKI service providers.

The PKCS #10 format only creates the certificate request; it does not transport the
request. You must determine a method of transporting a PKCS #10 certificate request
to a CA or RA.

The Cert-C PKI messaging APIs support creating and transporting PKI messages, for
example, a certificate request, as specified by the SCEP, CRS, and CMP protocols. For
an overview, see “PKI Certificate Request Message” on page 128 or for more detailed
information on these types of certificate requests, see chapter 9.

The CA and PKI that your organization uses determines the type of certificate request
method that you will use.
11 9

PKCS #10 Certificate Request
PKCS #10 Certificate Request
You can create a PKCS #10 certificate request using the Cert-C PKCS #10 object,
PKCS10_OBJ, as described in the PKCS #10 standard. The PKCS #10 standard does not
provide for transporting or submitting certificate requests to a CA. To see how to
create a PKCS #10 certificate request, see “Creating a PKCS #10 Certificate Request”
on page 123.

Because the PKCS #10 standard does not provide for the transportation of the
certificate request, it is up to you and your CA to determine how to transport the
certificate request to the CA. You also need to do this for the certificate response. For
example, if a CA does not support a digital method for receiving a certificate request,
then the certificate requester creates a PKCS #10 certificate request, signs the
certificate request, and obtains the DER encoding of the certificate request. The
certificate requester can then send the DER-encoded PKCS #10 certificate request by
e-mail, FTP, or even facsimile to the CA. The CA can copy and paste the certificate
request into the certificate server application, or enter the information manually.
Again, the PKCS #10 certificate-request transportation method is completely up to
you and your CA.

Figure 8-1 shows the method to transport a PKCS #10 certificate request to a CA
depends on the implementation.

Figure 8-1 PKCS #10 Certificate Request

PKCS #10 Object
Cert-C represents certificate-request information with a PKCS10_OBJ object. A
PKCS10_OBJ is used to form the PKCS #10 request binary. It does not cover the

Cert-C Unknown (Developer Implementation)

DER-Encoded
PKCS #10
Certificate
Request

Enterprise
CA

Administrator

Certificate
Server

Transport:
· e-mail
· other

Transfer:
· paste
· other
1 2 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKCS #10-Object Functions
transport of the request or the receipt of the fulfilled request. Cert-C does support
certificate-request protocols—for example, CRS, SCEP, and CMP—that include the
formation and transport of the request messages. For more information about how to
create a certificate request that includes the formation and transport of the request
message, see “PKI Certificate Request Message” on page 128. For more information
about the request message protocols that Cert-C supports, see the PKI service
providers in the “Service Provider” section of the API Reference.

PKCS #10-Object Functions
You must use a Cert-C function to view or modify information in a PKCS10_OBJ object.
You cannot assume that the PKCS10_OBJ object points to any specific information.
Some examples of the functions that Cert-C provides to generate and manipulate
PKCS #10 certification requests are listed in the following table.

Create or Destroy PKCS10_OBJ Functions

Set or Modify PKCS10_OBJ Functions

Function Description

C_CreatePKCS10Object Creates a PKCS #10 object.

C_DestroyPKCS10Object Destroys a PKCS #10 object, freeing the memory the
certificate-request object occupied.

Function Description

C_SetPKCS10Fields Sets a PKCS #10 object with the values provided in a
PKCS10_FIELDS structure.

C_SetPKCS10BER Sets the BER encoding of a PKCS #10 object.

C_SignPKCS10 Signs a PKCS #10 object.

C_VerifyPKCS10Signature Checks the signature on a PKCS #10 object.
C h a p t e r 8 C r e a t i n g a C e r t i f i c a t e R e q u e s t 12 1

PKCS #10-Object Functions
Get PKCS10_OBJ Functions

Function Description

C_GetPKCS10Fields Gets the content of the PKCS10_FIELDS structure in a PKCS #10
object.

C_GetPKCS10DER Gets the DER encoding of a PKCS #10 object.
1 2 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKCS #10 Certificate Request
Creating a PKCS #10 Certificate Request
The following PKCS #10 object example creates a PKCS #10 certificate request. You
first create a PKCS #10 object, you add certificate request information to the PKCS #10
object, then you sign the certificate request. Later you can then retrieve the
DER-encoded certificate request. You must use the CERTC_CTX context when creating a
PKCS #10 object. You can look at the samples/pkcs10/pkcs10.c sample program and
use it to experiment with creating and parsing PKCS #10 binary.

Step 1: Create a PKCS #10 certificate request object
To create a PKCS #10 certificate request you need a subject name, possibly some
attributes, and the subject’s public key. You have already created a name (see
“Creating a Name Object” on page 105), and an attribute (see “Creating an Attributes
Object” on page 115). See “Key Object” on page 289 to create a public key. Then you
build a PKCS #10 certificate request using these objects.

To create a PKCS #10 object you use the C_CreatePKCS10Object function. For more
information on C_CreatePKCS10Object, see the API Reference.

The C_CreatePKCS10Object function requires a Cert-C context to access a registered
cryptographic service provider, and optionally, a registered surrender context. The
cryptographic service provider is required for the underlying cryptographic
operations; for example, signing the PKCS #10 object. The cryptographic service
provider contains the Crypto-C algorithm chooser needed for the underlying
cryptographic operations. Because cryptographic operations can take a considerable
amount of time, you should also register a surrender context. The surrender context
provides a way for you to interrupt lengthy operations or to stop a lengthy operation.

Using the C_CreatePKCS10Object function, you declare a variable to be PKCS10_OBJ
and pass its address as the argument. You also pass Cert-C a previously initialized
Cert-C context. For more information about initializing a Cert-C context, see
“Initializing the Cert-C Context” on page 75. The return value of this routine is a 0
(zero) for success and a non-zero error code when something goes wrong. Any
clean-up code always executes, whether an error occurs or not. You should initialize
an object to NULL_PTR; if there is an error before an object has the chance to be created,

int C_CreatePKCS10Object (
 CERTC_CTX ctx, /* Cert-C context */
 PKCS10_OBJ *pkcs10Object /* (out) PKCS#10 object to be created */
);
C h a p t e r 8 C r e a t i n g a C e r t i f i c a t e R e q u e s t 12 3

Creating a PKCS #10 Certificate Request
the clean-up code acts on a NULL_PTR and does not do any damage.

Step 2: Enter the PKCS #10 certificate request information
Now that you have created a PKCS #10 object, you need to add certificate-request
information to the PKCS #10 object. To fill the PKCS #10 object you use the
C_SetPKCS10Fields function. For more information about the C_SetPKCS10Fields
function, see the API Reference.

The first argument is the PKCS #10 certificate-request object you created. The second
argument is a PKCS10_FIELDS structure. This structure holds the information
necessary to create a PKCS #10 certification-request message. For more information
about PKCS10_FIELDS, see the API Reference.

You declare a variable to be a PKCS10_FIELDS structure and fill in the elements with

CERTC_CTX ctx;
PKCS10_OBJ pkcs10Obj = (PKCS10_OBJ)NULL_PTR;

status = C_CreatePKCS10Object (ctx, &pkcs10Obj);
if (status != 0)
 goto CLEANUP;

int C_SetPKCS10Fields (
 PKCS10_OBJ pkcs10Object, /* (in/out) PKCS #10 object */
 PKCS10_FIELDS *pkcs10Fields /* PKCS #10 fields */
);

typedef struct PKCS10_FIELDS {
 UINT2 version;
 NAME_OBJ subjectName;
 ITEM publicKey;
 ATTRIBUTES_OBJ attribute;
 POINTER reserved;
} PKCS10_FIELDS;
1 2 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKCS #10 Certificate Request
the information you have already built.

Step 3: Sign the PKCS #10 certificate request
You can now sign the PKCS #10 certificate request. You sign it using the private key
associated with the subject’s public key in the certificate request. When you send the
certificate request to the CA, the CA can use the public key in the certificate request to
verify the signature. In this way, the CA can be certain the requestor has access to the
private key. Otherwise, anyone can take a public key and present it to the CA and
claim to be the owner.

You use the C_SignPKCS10 function to sign the PKCS10_OBJ. For more information
about C_SignPKCS10, see the API Reference.

The first argument is the PKCS10_OBJ that you created. The second argument is a
Crypto-C key object, see “Key Object” on page 289. For more information about
Crypto-C and its key object, see “Using BSAFE Crypto-C” on page 287 or the Crypto-C
Developer’s Guide. signAlgorithmID is the signature algorithm identifier. Values for this
parameter may be any of the SA_* values found in the certalg.h header file.

PKCS10_FIELDS pkcs10Info;

pkcs10Info.version = CERT_VERSION_1;
pkcs10Info.subjectName = requestorName;
pkcs10Info.publicKey.data = bsafePublicKeyBER->data;
pkcs10Info.publicKey.len = bsafePublicKeyBER->len;
pkcs10Info.attributes = extraAttributes;
pkcs10Info.reserved = NULL_PTR;

status = C_SetPKCS10Fields (pkcs10Obj, &pkcs10Info);
if (status != 0)
 goto CLEANUP;

int C_SignPKCS10(
 PKCS10_OBJ pkcs10Object, /* (mod) PKCS#10 object */
 B_KEY_OBJ subjectPrivateKey, /* (in) subject’s private key */
 int signAlgorithmID /* (in) signature algorithm ID */
);

status = C_SignPKCS10 (pkcs10Obj, privateKey,
 SA_SHA1_WITH_RSA_ENCRYPTION);
C h a p t e r 8 C r e a t i n g a C e r t i f i c a t e R e q u e s t 12 5

Creating a PKCS #10 Certificate Request
Step 4: Retrieve the PKCS #10 certificate request information in
DER format
You now have a signed PKCS #10 certificate request object. Ultimately, you want to
send the certificate request to a CA in a form that it will understand. To do this you
need to use the C_GetPKCS10DER function to retrieve the DER encoding of the
certificate-request information.

Using the C_GetPKCS10DER function, you give Cert-C a PKCS #10 object, the address of
a pointer and the address of an unsigned int. At the addresses, Cert-C places a
pointer to the DER encoding of the attributes and the length of the DER-encoded
attributes. What the pointer to the DER encoding points to belongs to Cert-C. You do
not allocate or free that memory. Also, you should not attempt to adjust the data
yourself. The information remains unchanged until you call a Cert-C routine that
modifies or destroys the PKCS #10 object. To save this information, you must copy it
into a file or your own buffer.

The RSA_WriteDataToFile routine is not a Cert-C routine; it is a demo utility routine.
For more information about Cert-C demo utilities, see the Advanced Developer’s Guide.

if (status != 0)
 goto CLEANUP;

int C_GetPKCS10DER(
 PKCS10_OBJ pkcs10Object, /* (mod) PKCS #10 obj */
 unsigned char **der, /* (out) pointer to DER output buffer */
 unsigned int *derLen /* (out) length of DER output buffer */
);

unsigned char *pkcs10Der;
unsigned int pkcs10DerLen;

status = C_GetPKCS10DER (pkcs10Obj, &pkcs10Der, &pkcs10DerLen);
if (status != 0)
 goto CLEANUP;
1 2 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKCS #10 Certificate Request
You can use RSA_WriteDataToFile to write binary data to a file.

You can now send the certificate request to the CA.

Step 5: Destroy name, attributes, and PKCS #10 objects
Any object you create you must destroy, making sure you have saved any
information you need later. This will free up any memory allocated by Cert-C. If an
object is NULL_PTR, then Cert-C does nothing. That is why you should always initialize
all objects to NULL_PTR and call the C_Destroy* function later. If there is an error
before creating an object, then the C_Destroy* function does not do any damage.

status = RSA_WriteDataToFile
 (pkcs10Der, pkcs10DerLen,
 "Enter name of file to store PKCS #10 binary");
if (status != 0)
 goto CLEANUP;

CLEANUP:
 C_DestroyNameObject (&requestorName);
 C_DestroyAttributesObject (&extraAttributes);
 C_DestroyPKCS10Object (&pkcs10Obj);
C h a p t e r 8 C r e a t i n g a C e r t i f i c a t e R e q u e s t 12 7

PKI Certificate Request Message
PKI Certificate Request Message
You can create an initialization request or a certificate request message using the
Cert-C PKI message object, PKI_MSG_OBJ, and the PKI certificate request object,
PKI_CERT_REQ_OBJ. You use the PKI_MSG_OBJ and PKI_CERT_RESP_OBJ object for the
certificate response message.

Cert-C supports the CRS, CMP, and SCEP PKI messaging transport mechanisms. The
CRMF message format is also supported for use with the Cert-C CMP PKI service
provider. These transport mechanisms are supported through the use of the Cert-C
PKI messaging API and the various Cert-C PKI service providers. For more
information about the Cert-C PKI service providers, see the “Service Provider”
section of the API Reference. To create a certificate request and transport it to a CA
using CRS, SCEP, or CMP, use the relevant Cert-C PKI service provider and the PKI
messaging APIs.

Figure 8-2 PKI Messaging Certificate Request

For general information about how to create a PKI request message, see “Creating a
PKI Request Message” on page 137. For an example of a PKI certificate request, see
the “PKI Transaction Samples and Examples” chapter in the Advanced Developer’s
Guide.

Cert-C Unknown (Developer Implementation)

DER-Encoded
Certificate
Request

Certificate
Server

Protocols:
· CMP
· CRS
· SCEP Transport
1 2 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 9

Creating a PKI Message
When you want to send a request message to a CA or RA, you need a mechanism to
communicate with the CA or RA. For example, you might want to request a certificate
or revoke a certificate. Cert-C provides transport mechanisms that support the CMP,
CRS, and SCEP protocols. These protocols are implemented through the Cert-C PKI
service providers. For more information about these service providers, see the
“Service Provider” section of the API Reference.

You also need a way to represent a request message; in Cert-C, you use the
PKI_MSG_OBJ object. Whether you choose to use the CMP, CRS, or SCEP protocol, you
use the PKI_MSG_OBJ object. Cert-C supports PKI request and response messages, of
the same type, in the PKI message object.

Cert-C provides request and response objects and APIs to perform the following PKI
request and response messages:

• Certificate request and response
• Certificate confirmation request and response
• Key update request and response
• Certificate revocation request and response

When you construct a CMP certification request message, you can also request key
archival. This is specified through the controls field of the CertReqMessage, which is
in the PKI_CERT_REQ_OBJ.

For information about which Cert-C PKI service provider supports each of these PKI
12 9

PKI Message Object
message request and response types, see the “Service Provider” section of the API
Reference.

PKI Message Object
Cert-C uses a PKI_MSG_OBJ object to store and pass PKI message requests and
responses that pass between a certification-requesting application and a CA or RA.
Cert-C supports certificate requests and responses, certificate confirmation requests
and responses, key update requests and responses, and certificate revocation requests
and responses.

Cert-C supports the CRS, CMP, and SCEP PKI messaging transport mechanisms. The
CRMF message format is also supported for use with the Cert-C CMP PKI service
provider. These transport mechanisms are supported through the use of the Cert-C
PKI messaging API and the various Cert-C PKI service providers. For more
information about the Cert-C PKI service providers, see the “Service Provider”
section of the API Reference. To create a PKI message request and transport it to a CA
using CRS, SCEP, or CMP, use the relevant Cert-C PKI service provider and the PKI
messaging APIs

To set a PKI_MSG_OBJ with a PKI message type, call C_SetPKIMsgType and pass one of
the following message types.

• PKI_MSGTYPE_CERT_REQ

• PKI_MSGTYPE_KEY_UPDATE_REQ

• PKI_MSGTYPE_REVOKE_REQ

Similarly, you can call C_GetPKIMsgType to determine the type of message in a
PKI_MSG_OBJ.

Cert-C also supports key archival requests, at the time of the certificate request. To
find out which types of PKI request and response messages each Cert-C PKI service
provider provides, see the “Service Provider” section of the API Reference.

A PKI message object can encapsulate any of the following PKI objects.

PKI Objects
• PKI_CERT_REQ_OBJ

• PKI_CERT_RESP_OBJ

• PKI_CERT_CONF_REQ_OBJ

• PKI_CERT_CONF_RESP_OBJ
1 3 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Deprecated PKI Messaging APIs and Structures
• PKI_KEY_UPDATE_REQ_OBJ

• PKI_KEY_UPDATE_RESP_OBJ

• PKI_REVOKE_REQ_OBJ

• PKI_REVOKE_RESP_OBJ

• PKI_ERROR_MSG_OBJ

PKI Related Objects
There are two more PKI objects: PKI_CERT_TEMPLATE_OBJ and PKI_STATUS_INFO_OBJ.
However, the PKI_MSG_OBJ does not directly encapsulate these objects.

• Both PKI_CERT_REQ_OBJ and PKI_KEY_UPDATE_REQ_OBJ encapsulate the
PKI_CERT_TEMPLATE_OBJ object.

• The PKI_CERT_RESP_OBJ, PKI_KEY_UPDATE_RESP_OBJ, PKI_REVOKE_RESP_OBJ, and
PKI_CERT_CONF_REQ_OBJ objects encapsulate the PKI_STATUS_INFO_OBJ object.

Deprecated PKI Messaging APIs and Structures
In Cert-C 2.0 you used the C_GetPKIMsgFields and C_SetPKIMsgFields APIs to
modify the PKI_MSG_FIELDS structure. This structure represented the fields of a PKI
message object. The C_GetPKIMsgFields and C_SetPKIMsgFields API and the
PKI_MSG_FIELDS structure were deprecated in Cert-C 2.5. Many other PKI message
APIs and structures were deprecated in Cert-C 2.5. The following is a list of those
deprecated functions and structures:

Deprecated Functions
• C_GeneratePKIProofOfPossession

• C_GetPKICertRequestFields

• C_GetPKICertResponseFields

• C_GetPKIMsgFields

• C_ReadPKICertResponseMsg

• C_RequestPKICert

• C_SendPKIMsg

• C_SetPKICertResponseFields

• C_SetPKICertRequestFields

• C_SetPKIMsgFields

• C_ValidatePKIProofOfPossession

• C_WritePKICertRequestMsg
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 13 1

PKI Message Object Functions
Deprecated Structures
• PKI_MSG_FIELDS

• PKI_CERTREQ_FIELDS

• PKI_CERTRESP_FIELDS

• PKI_RECIPIENT

Instead of these deprecated APIs, Cert-C provides new C_Set* and C_Get* APIs that
you must call directly on the PKI message object. These APIs modify the internal
fields of a PKI message object. Cert-C also provides new C_Set* and C_Get* APIs to
modify the internal fields of the new PKI objects, which are encapsulated in the
PKI_MSG_OBJ. These new PKI objects and their related APIs are described in detail
later in this chapter.

There are three categories of APIs for the PKI message object. The first set of APIs act
on the actual PKI_MSG_OBJ; for example, APIs that create, destroy, or reset the
PKI_MSG_OBJ. The second set of APIs manipulate the individual PKI message fields in
a PKI_MSG_OBJ. The third set of APIs perform operations based on the contents of the
PKI_MSG_OBJ; for example, generating or sending a PKI request message to a CA or
RA.

PKI Message Object Functions
You must use a Cert-C function to view or modify information in a PKI_MSG_OBJ
object. You cannot assume that the PKI_MSG_OBJ object points to any specific
information. Some examples of the functions that Cert-C provides to work with a PKI
message object are listed in the following table.

Create, Reset, or Destroy PKI_MSG_OBJ Functions

Function Description

C_AddPKIMsg Adds a specific type of PKI message to a PKI message
object.

C_CreatePKIMsgObject Creates a new PKI message object and stores the result.

C_DeletePKIMsg Deletes a PKI message in a PKI message object.

C_DestroyPKIMsgObject Destroys a PKI message object and frees its associated
memory.
1 3 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Message Object Functions
Get, Set, or Modify PKI_MSG_OBJ Functions

C_DestroyPKIProviderData Destroys the provider-specific data stored in a
PKI_MSG_OBJ object by calling the Destroy function
specified in the handler provided to the
C_SetPKIProviderData function.

C_GetPKIMsg Gets a PKI message from a PKI message object.

C_GetPKIMsgCount Gets the number of PKI message objects in a single PKI
message object.

C_GetPKIProviderData Retrieves provider-specific data previously associated with
a PKI_MSG_OBJ message, by a call to
C_SetPKIProviderData. Typically used by a service
provider.

C_ResetPKIMsgObject Resets a PKI message object to the initial state produced
by calling the C_CreatePKIMsgObject function.

C_SetPKIProviderData Associates service provider-specific data with the
PKI_MSG_OBJ object. Typically used by a service provider.

Function Description

C_GetPKIMsgExtraCerts Gets any extra certificates that are stored in a PKI
message object.

C_GetPKIMsgExtraCRLs Gets any extra CRLs that are stored in a PKI message
object.

C_GetPKIMsgFreeText Gets a list of text strings stored in a PKI message object,
which contain context-specific information to accompany
the message.

C_GetPKIMsgGeneralInfo Gets a set of messaging attributes stored in a PKI
message object, which are used to convey
context-specific information.

C_GetPKIMsgProtectionType Gets the protection type of an initialized PKI message
object.

C_GetPKIMsgRecipient Gets the recipient information stored in a PKI message
object and populates a PKI_RECIPIENT_INFO
structure.

C_GetPKIMsgRecipientNonce Gets the message-recipient nonce stored in a PKI
message object.

Function Description
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 13 3

PKI Message Object Functions
C_GetPKIMsgSender Gets the sender information stored in a PKI message
object and populates a PKI_SENDER_INFO structure.

C_GetPKIMsgSenderNonce Gets the message-sender nonce stored in a PKI message
object.

C_GetPKIMsgTime Gets the time when the PKI message was generated,
which is stored in a PKI message object.

C_GetPKIMsgTransID Gets the transaction ID used to associate a request
message with its corresponding response message,
which is stored in a PKI message object.

C_GetPKIMsgType Gets the message type of a PKI message object.

C_GetPKIMsgVersion Gets the value of the protocol version, stored in a PKI
message object.

C_SetPKIMsgExtraCerts Sets extra certificates in the PKI message object. The
recipient can use these certificates to build a certificate
chain.

C_SetPKIMsgExtraCRLs Sets extra CRLs in the PKI message object. The recipient
can use these certificates to build a certificate chain.

C_SetPKIMsgFreeText Sets the PKI message object with a list of text strings that
contain context-specific information to accompany the
PKI message.

C_SetPKIMsgGeneralInfo Sets the PKI message object with a set of messaging
attributes used to convey context-specific information in
the PKI message.

C_SetPKIMsgProtectionType Sets the message protection type of the PKI message.

C_SetPKIMsgRecipient Sets or initializes the recipient-specific information in a
PKI message object.

C_SetPKIMsgRecipientNonce Sets the message-recipient nonce in a PKI message
object.

C_SetPKIMsgSender Sets or initializes the sender-specific information in a PKI
message object.

C_SetPKIMsgSenderNonce Sets the message-sender nonce in a PKI message object.

C_SetPKIMsgTime Sets the PKI message generation time in a PKI message
object.

C_SetPKIMsgTransID Sets the transaction ID, used to associate a request
message with its corresponding response message, in a
PKI message object.

Function Description
1 3 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Message Object Functions
Operation PKI_MSG_OBJ Functions
There are two ways to make a PKI request. You can use the C_RequestPKIMsg function
(high-level function) or you can use the C_GetPKIMsgDER, C_SendPKIRequest and
C_SetPKIMsgBER sequence of functions (low-level functions).

You should use the high-level functions in your application. Use the low-level
functions only for debugging purposes and doing batch processing.

For example, the high-level function, C_RequestPKIMsg, generates a request’s DER
encoding, sends the request’s DER to the CA, decodes the response’s DER from the
CA, and populates the response message object.

Calling the low-level functions, C_GetPKIMsgDER, C_SendPKIRequest and
C_SetPKIMsgBER require your application to handle and pass objects or information
between the function calls.

The following functions are high-level functions. You should use these functions in
your application.

The following functions are low-level functions. You can use these functions for

C_SetPKIMsgType Sets the PKI message type that this PKI message object
represents. If the type is changed, the type-specific
information is updated.

C_SetPKIMsgVersion Sets the value of the protocol version in a PKI message
object.

High-Level Function Description

C_GeneratePKIMsgProofOfPossession Generates a Proof-Of-Possession (POP) for a
specified PKI request message in the PKI
message object.

C_RequestPKIMsg Sends a PKI request message to the specified
PKI service provider. Optionally, a follow-on
request confirms the first request.

C_ValidatePKIMsgProofOfPossession Validates a POP for a specified PKI request
message in the PKI message object.

Function Description
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 13 5

PKI Message Object Functions
debugging your application or batch processing.

Low-Level Function Description

C_GetPKIMsgDER Creates a serialized request message according to the protocol
implemented by the specified PKI service provider. This API does not
transmit the message to a CA or RA. This function also applies relevant
cryptographic protections, such as digital signatures or envelopes, to
the message as a part of the serialization process.

C_SendPKIRequest Sends a serialized PKI request message to a CA or RA and returns an
encoded PKI response message, and the status of the PKI request.

C_SetPKIMsgBER Processes a PKI response message. It validates the cryptographic
protections (for example, digital signatures) and sets the serialized
response in a PKI message object.
1 3 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKI Request Message
Creating a PKI Request Message
This example demonstrates the general steps involved in creating a PKI request
message. To send a PKI request message, you must register a PKI service provider.
For more information about the various Cert-C PKI service providers, see the “Service
Provider” section of the API Reference. For demonstration purposes, this example
considers a PKI certificate request using the Cert-C CMP PKI service provider.

For specific PKI request message examples, see the “PKI Transaction Samples and
Examples” chapter in the Advanced Developer’s Guide. To generate the key update
request information, see the “CMP Key Update Request Example” example or to
generate the certificate revocation request information, see the “CMP Certificate
Revocation Example” example.

Before you can create a PKI certificate request, a key update request, or a certificate
revocation request, you must generate the PKI request information. For example, a
name object and a key object.

In this example, you create a PKI request message. When you create a PKI request
message, you encapsulate a PKI request object in a PKI message object, PKI_MSG_OBJ.
The following is a list of the PKI request objects:

• PKI_CERT_REQ_OBJ

• PKI_CERT_CONF_REQ_OBJ

• PKI_KEY_UPDATE_REQ_OBJ

• PKI_REVOKE_REQ_OBJ

You create a PKI message object and a PKI request object, then you set the PKI
message object with the PKI request object information. You send the PKI request
message to a CA or RA. The CA sends a PKI response message to you. You must
examine this response and take the appropriate action for the certificate-request
protocol that you used. If you find the response is not valid, then evaluate the error
message.

For a certificate request, if you use the CMP protocol v1 (RFC 2510, CMP1), the
C_RequestPKIMsg function does not return a response message in the response output
parameter. If you use the CMP protocol v2, (draft-ietf-pkix-rfc2510bis-06.txt,
CMP 2), the C_RequestPKIMsg function returns a response message in the response
output parameter. If an error occurs, C_RequestPKIMsg returns a non-zero return code.
You should check the return code and the value of response to make sure the request
is successful.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 13 7

Creating a PKI Request Message
Step 1: Register a PKI service provider with a Cert-C context
Initialize Cert-C and register a PKI service provider with the CERTC_CTX. You can do
this by calling either C_InitializeCertC or C_RegisterService. The
SERVICE_HANDLER structure contains service-provider information and the
service-provider initialization function. In this example, you use the Cert-C CMP PKI
service provider. The service-provider initialization routine is S_InitializeCMP and
the service-provider-specific parameters are stored in a PKI_CMP_SP_INIT_PARAMS
structure. To see how to initialize and register a service provider, see “Initializing the
Cert-C Context” on page 75.

For more information about C_InitializeCertC and SERVICE_HANDLER, see the API
Reference.

Set the Cert-C CMP PKI service provider’s PKI_CMP_SP_INIT_PARAMS.initChoice field
to PKI_CMP_INIT_METHOD_STRUCT.

Set the PKI service provider’s PKI_CMP_SP_INIT_PARAMS.method.initStruct.profile
field to one of the service provider’s profile identifiers. In this example, you set the
profile field to PKI_CMP_PROFILE_KCA6.

You must also set a TRANSPORT_INFO structure with the information required to locate
the CA you wish to use. The PKI_CMP_SP_INIT_PARAMS.method.initStruct.transport

#include "cmp.h"

#define SP_COUNT 1
#define CMP_PROVIDER_NAME "RSA CMP provider"

 CERTC_CTX ctx = NULL;
 SERVICE_HANDLER spTable[SP_COUNT];
 POINTER spParams[SP_COUNT];

 PKI_CMP_SP_INIT_PARAMS cmpInitParams;

 spTable[0].type = SPT_PKI;
 spTable[0].name = CMP_PROVIDER_NAME;
 spTable[0].Initialize = S_InitializeCMP;

 T_memset ((POINTER)&cmpInitParams, 0, sizeof (cmpInitParams));
1 3 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKI Request Message
field is a TRANSPORT_INFO structure.

Step 2: Create and set a PKI message object
In this step, you create a PKI message object and set it with the appropriate
information.

Step 2a: Create a PKI message object
Create a PKI message object, PKI_MSG_OBJ, using the C_CreatePKIMsgObject function.

Step 2b: Set the PKI message type
Set the PKI message object with the type of PKI message you want to create. You call
C_SetPKIMsgType to set one of the following PKI request message types:

• PKI_MSGTYPE_CERT_REQ

• PKI_MSGTYPE_KEY_UPDATE_REQ

• PKI_MSGTYPE_REVOKE_REQ

• PKI_MSGTYPE_CERT_CONF_REQ

In this example, you set the PKI message type to PKI_MSGTYPE_CERT_REQ.

 /* This is the only option currently available */
 cmpInitParams.initChoice = PKI_CMP_INIT_METHOD_STRUCT;

 cmpInitParams.method.initStruct.profile = PKI_CMP_PROFILE_KCA6;

 spParams[0] = (POINTER)&cmpInitParams;

 status = C_InitializeCertC (spTable, spParams, SP_COUNT, &ctx);
 if (status != 0)
 goto CLEANUP;

 PKI_MSG_OBJ pkiMsgObj = (PKI_MSG_OBJ)NULL_PTR;

 status = C_CreatePKIMsgObject (ctx, &pkiMsgObj);
 if (status != 0)
 goto CLEANUP;

 status = C_SetPKIMsgType (pkiMsgObj, PKI_MSGTYPE_CERT_REQ);
 if (status != 0)
 goto CLEANUP;
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 13 9

Creating a PKI Request Message
Step 2c: Set the message protection type
Set the type of protection you want to use to cryptographically protect the PKI
message. The protection-type information is stored in a PKI_PROTECT_INFO structure.
This protection information is required when you call the C_RequestPKIMsg function.

To set the protection-type information, call the C_SetPKIMsgProtectionType function
and pass one of the following protection algorithms:

• PKI_MSG_PROTECTION_NONE

• PKI_MSG_PROTECTION_SIGN

• PKI_MSG_PROTECTION_ENVELOPE

• PKI_MSG_PROTECTION_SIGN_THEN_ENVELOPE

• PKI_MSG_PROTECTION_ENVELOPE_THEN_SIGN

• PKI_MSG_PROTECTION_PBM

If you want to use a shared secret to protect the PKI message, PKI_PROTECT_INFO.
secret should point to an ITEM that specifies the shared secret. The protection
algorithms determine whether a shared secret or public/private key is needed.

If the PKI message-protection algorithms use a public or private key, the
PKI_PROTECT_INFO.protectionCtx field should specify the certification-path context. It
supplies both a source for any certificates required and a source for the private key, if
one is needed.

For more information about setting the protection information, see the
C_SetPKIMsgProtectionType function and the PKI_PROTECT_INFO structure in the API
Reference.

Step 2d: Set the sender information
Set the PKI_SENDER_INFO structure with the message sender information. In this
example, you set PKI_ENTITY_ID to the PKI_ENTITY_GENERALNAME_KEYID flag to
supply the sender’s general name and optional sender key identifier. Once you have
filled the PKI_SENDER_INFO structure, call the C_SetPKIMsgSender function to set the
information into the PKI message object.

The PKI_SENDER_INFO structure has a large number of fields (and these have
subfields). Some of these fields are optional, depending on the service provider. For
information on which fields are required by a specific service provider, see the
“Service Provider” section of the API Reference.

If you have not initialized the PKI_SENDER_INFO structure with a prior call to the
C_GetPKIMsgSender function, then you should call T_memset before calling the
C_SetPKIMsgSender function, to ensure that all unused fields are initialized to 0 (zero).
1 4 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKI Request Message
For more information about setting message-sender information, see the
C_SetPKIMsgSender function and the PKI_SENDER_INFO structure in the API Reference.

Step 2e: Set optional PKI message fields
At this point, you have the option to set more PKI message fields. These are optional
fields. For a list of the functions to set these fields, see “Get, Set, or Modify
PKI_MSG_OBJ Functions” on page 133.

You now have a PKI message object into which you can place a PKI request message
object.

Step 3: Create and set a PKI request object
In this step, you create a PKI request object and set it with the appropriate
information.

Step 3a: Create a PKI request object
You must choose which type of PKI request object that you want to create, and set
(encapsulate) in the PKI message object. However, the PKI request object must match
the PKI message type you choose in “Step 2b: Set the PKI message type” on page 139.
Table 9-1 shows the different types of request objects you can create and the function
you call to create the request object:

In this example, you create a certificate-request object, PKI_CERT_REQ_OBJ. To create a
certificate-request object, call the C_CreatePKICertReqObject function.

Table 9-1 PKI Request Objects and Their Create Functions

Request Type Object Create Function

Certificate request PKI_CERT_REQ_OBJ C_CreatePKICertReqObject

Key update request PKI_KEY_UPDATE_REQ_OBJ C_CreatePKIKeyUpdateReqObject

Certificate revocation
request

PKI_REVOKE_REQ_OBJ C_CreatePKIRevokeReqObject

 PKI_CERT_REQ_OBJ certReqObj = (PKI_CERT_REQ_OBJ)NULL_PTR;

 status = C_CreatePKICertReqObject (ctx, &certReqObj);
 if (status != 0)
 goto CLEANUP;
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 14 1

Creating a PKI Request Message
Step 3b: Set the PKI request object

What you set in the PKI request object is specific to the type of PKI request object you
created in “Step 3a: Create a PKI request object” on page 141. For more information on
the functions that set the different PKI request objects, see the appropriate PKI request
object section in this chapter. See the “PKI Transaction Samples and Examples”
chapter in the Advanced Developer’s Guide for examples that set specific PKI request
objects.

Note: At this point, if you are creating a certificate request, you should decide
whether you want to do key archival or not. Key archival options are
specified in the controls field of the PKI_CERT_REQ_OBJ. For more information
about how to do key archival, see “CMP Key Archival Request Example” in
the Advanced Developer’s Guide or see the samples/cmp/cmpreq.c sample
program.

In this example, you created a certificate-request object. For an initialization or
certificate request, a key-update request, or a certificate-revocation request, you must
also create and set a certificate-template object. To create a certificate-template object,
call the C_CreatePKICertTemplateObject function.

You must also set the fields of the PKI_CERT_TEMPLATE_OBJ. To set the
PKI_CERT_TEMPLATE_OBJ, see “Certificate-Template Object” on page 162 for a list of
the C_Set* functions.

Alternatively, you could transfer certificate information from a CERT_OBJ to a
PKI_CERT_TEMPLATE_OBJ. To transfer the certificate information, you call the
C_GetPKICertTemplateFromCertObject function.

When you have created and set the PKI_CERT_TEMPLATE_OBJ object, you call the
C_SetPKICertReqCertTemplate function to set the PKI_CERT_REQ_OBJ with the
PKI_CERT_TEMPLATE_OBJ object.

 PKI_CERT_TEMPLATE_OBJ certTemplateObj = (PKI_CERT_TEMPLATE_OBJ)NULL_PTR;

 status = C_CreatePKICertTemplateObject (ctx, &certTemplateObj);
 if (status != 0)
 goto CLEANUP;

 status = C_SetPKICertReqCertTemplate (certReqObj, certTemplateObj);
 if (status != 0)
 goto CLEANUP;
1 4 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKI Request Message
Step 4: Add PKI request object to the PKI message object
Call the C_AddPKIMsg function to add the PKI request information to the PKI_MSG_OBJ.
In this example, you add the PKI_CERT_REQ_OBJ to the PKI_MSG_OBJ.

You must add the PKI request object to the PKI message object before you generate or
supply the POP value. When you call C_AddPKIMsg, the function returns the index in
the PKI_MSG_OBJ for the added request. You need this index to call the
C_GeneratePKIMsgProofOfPossession function.

You can use C_GetPKIMsgCount and C_GetPKIMsg to access the request in the PKI
message object, and make modifications to the request object.

Step 5 (optional): Generate proof-of-possession
If you create a certificate request or a key update request, you can call the
C_GeneratePKIMsgProofOfPossession function to generate a POP value. This value
may be required by some CAs.

A POP is a calculated value that can prove the entity that created the request has
control over the private key that corresponds to the public key for which a certificate
is requested.

You must also supply a PKI_POP_GEN_INFO structure that is populated with the
appropriate values to indicate the desired method for POP.

For more information about the C_GeneratePKIMsgProofOfPossession function and
the PKI_POP_GEN_INFO structure, see the API Reference.

 unsigned int reqIndex;

 status = C_AddPKIMsg (pkiMsgObj, (POINTER)certReqObject, &reqIndex);
 if (status != 0)
 goto CLEANUP;

 status = C_GeneratePKIMsgProofOfPossession (ctx, CMP_PROVIDER_NAME,
 pkiMsgObj, reqIndex,
 privateKey,
 &popGenInfo);
 if (status != 0)
 goto CLEANUP;
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 14 3

Creating a PKI Request Message
Step 6: Send the PKI message
Before you send the PKI request message, you need to prepare to receive the response
message. You need to create another PKI_MSG_OBJ, using the C_CreatePKIMsgObj
function.

You also need to create a database SERVICE handle. The C_RequestPKIMsg function
uses this SERVICE handle to place any certificates, CRLs, or keys, which are returned,
into a database. For information about how to create a database SERVICE handle, see
“Binding a Service” on page 80. In “Step 2c: Set the message protection type” on
page 140, you already set a PKI_PROTECT_INFO protectInfo with the appropriate
message-protection information.

You can now call the C_RequestPKIMsg function to send the PKI message. The
C_RequestPKIMsg function generates the request’s DER, sends the DER-encoded
request to the CA, decodes the DER-encoded response from the CA, and populates
the PKI response-message object, which was created by the call to
C_CreatePKIMsgObject. For more information about the C_RequestPKIMsg function,
see the API Reference.

Step 7: Process the PKI message response
Call the C_GetPKIMsgType function to determine which type of PKI response message
was returned. You received either a valid PKI response message type or an error

 PKI_MSG_OBJ pkiMsgRespObj = (PKI_MSG_OBJ)NULL_PTR;

 status = C_CreatePKIMsgObject (ctx, &pkiMsgRespObj);
 if (status != 0)
 goto CLEANUP;

int C_RequestPKIMsg (
 CERTC_CTX ctx, /* (in) Cert-C context */
 char *pki, /* (in) PKI protocol handler name */
 PKI_MSG_OBJ pkiRequest, /* (in) Request object */
 PKI_PROTECT_INFO *pProtectInfo, /* (in) Protection/integrity info */
 SERVICE db, /* (out) Where to put keys, certs, crls */
 PKI_MSG_OBJ response); /* (out) Response message object */

 status = C_RequestPKIMsg (ctx, CMP_PROVIDER_NAME, pkiMsgObj, &protectInfo,
 db, pkiMsgRespObj);
1 4 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKI Request Message
message. The following are the possible types of responses:

• PKI_MSGTYPE_CERT_RESP

• PKI_MSGTYPE_REVOKE_RESP

• PKI_MSGTYPE_KEY_UPDATE_RESP

• PKI_MSGTYPE_CERT_CONF_REQ

• PKI_MSGTYPE_ERROR_MSG

In this example, you call the C_GetPKIMsgType function to determine if you received a
PKI_MSGTYPE_CERT_RESP or a PKI_MSGTYPE_ERROR_MSG.

If you receive a valid PKI response-message type, go to “Step 7a: Process a valid PKI
response” on page 145. If you receive a PKI error message go to “Step 7b: Process a
PKI error message” on page 147.

Step 7a: Process a valid PKI response
Call the C_GetPKIMsgCount function on the PKI_MSG_OBJ to determine how many
response messages need to be processed. For each response message, call the
C_GetPKIMsg function to extract the PKI response object.

In this example, you call C_GetPKIMsg to extract a PKI_MSGTYPE_CERT_RESP object.

Call the C_GetPKICertRespStatus or C_GetPKIRevokeRespStatus function to extract the

 unsigned int msgType;

 status = C_GetPKIMsgType (pkiMsgRespObj, &msgType);
 if (status != 0)
 goto CLEANUP;

 unsigned int i, msgCount, certReqStatus;
 PKI_CERT_RESP_OBJ certRespObj;
 PKI_STATUS_INFO_OBJ certRespStatusObj;

 status = C_GetPKIMsgCount (pkiMsgRespObj, &msgCount);
 if (status != 0)
 goto CLEANUP;

 for (i = 0; i < msgCount; i++) {
 status = C_GetPKIMsg (pkiMsgRespObj, (POINTER *)&certRespObj, i);
 if (status != 0)
 goto CLEANUP;
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 14 5

Creating a PKI Request Message
PKI_STATUS_INFO_OBJ from the response message. This object belongs to Cert-C;
therefore, you must not destroy this object.

Call the C_GetPKIStatus function to get the PKI status information from a
PKI_STATUS_INFO_OBJ. You do this to see if the request message was successful.

For more functions that can extract information from the PKI_STATUS_INFO_OBJ, see
the “PKI Status-Information Object” on page 165, or the API Reference.

After you call the C_GetPKIStatus function, you need to examine the request status to
see if the request was granted or not. In this example, you examine certReqStatus to
see if the request was granted or not. The following is a list of the Cert-C supported
request status options.

• PKI_STATUS_GRANTED

• PKI_STATUS_GRANTED_MODS

• PKI_STATUS_REJECTED

• PKI_STATUS_WAITING

• PKI_STATUS_WARNING_REVOCATION

• PKI_STATUS_REVOCATION

• PKI_STATUS_WARNING_KEY_UPDATE

If the request status is PKI_STATUS_REJECTED, call C_GetPKIFailInfo on the response’s
PKI_STATUS_INFO_OBJ object for more information.

For a certificate request, if the request status is PKI_STATUS_GRANTED or
PKI_STATUS_GRANTED_MODS, call C_GetPKICertRespRequestedCert to get a pointer to
the CERT_OBJ that contains the newly-issued certificate.

 status = C_GetPKICertRespStatus (pkiMsgRespObj, &certRespStatusObj);
 if (status != 0)
 goto CLEANUP;

 status = C_GetPKIStatus ((POINTER)certRespStatusObj, &certReqStatus);
 if (status != 0)
 goto CLEANUP;

 CERT_OBJ newCert;

 status = C_GetPKICertRespRequestedCert (certRespObj, &newCert);
 if (status != 0)
 goto CLEANUP;
1 4 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a PKI Request Message
For a revocation request, if the request status is PKI_STATUS_GRANTED or
PKI_STATUS_GRANTED_MODS, call C_GetPKIRevokeRespCRLs to output the list of CRLs
returned by the CA or call C_GetPKIRevokeRespCertID to output the list of revoked
certificates. Both functions output in the form of a PKI_CERT_IDENTIFIER structure.

For a CMP protocol certificate response or a CMP protocol key update response, if the
certificate is acceptable, then you need to create and send a certificate confirmation
request message. For more information about the confirmation request and response
objects, see “PKI Certificate-Confirmation Request Object Functions” on page 152 and
“PKI Certificate-Confirmation Response Object Functions” on page 154. Or, for more
information about how to create a confirmation request and process a confirmation
response, see “Step 7b: Create a PKI Message for a confirmation message” and “Step
7f: Process the confirmation response” of the “CMP Certificate Request Example,” in
the Advanced Developer’s Guide. A certificate revocation response message does not
require a confirmation request.

Step 7b: Process a PKI error message
Call the C_GetPKIMsgCount function on the PKI_MSG_OBJ to find out how many error
messages were returned. For each error message, call the C_GetPKIMsg function to
extract the PKI_ERROR_MSG_OBJs. You can now call C_GetPKIStatus,
C_GetPKIFailInfo, C_GetPKIStatusString, or C_GetPKIFailInfoAux on each
PKI_ERROR_MSG_OBJ to retrieve more information about the errors.

For more information about these functions, which handle a PKI response error, see
the API Reference.

Step 8: Destroy objects and clean up
Any object you create you must destroy, making sure you have saved any
information you need later. This frees up any memory allocated by Cert-C. If an object
is NULL_PTR, then Cert-C does nothing. That is why you should always initialize all
objects to NULL_PTR and call the C_Destroy* function later. If there is an error before
creating an object, then the C_Destroy* function does not do any damage. Next you
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 14 7

Creating a PKI Request Message
call C_FinalizeCertC to free allocated memory and zeroize sensitive data.

C_DestroyPKICertTemplateObject (&certTemplateObj);
C_DestroyPKICertConfReqObject (&certConfReqObj);
C_DestroyPKICertReqObject (&certReqObj);
C_DestroyPKIMsgObject (&pkiMsgConfRespObj);
C_DestroyPKIMsgObject (&pkiMsgConfReqObj);
C_DestroyPKIMsgObject (&pkiMsgRespObj);
C_DestroyPKIMsgObject (&pkiMsgObj);
C_FinalizeCertC (&ctx);
1 4 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Certificate-Request Object
PKI Certificate-Request Object
Use the PKI_CERT_REQ_OBJ object to send an initialized request or certificate request to
the CA or RA to request a certificate.

You can create an initialization-request or a certificate-request message using the
Cert-C PKI message object, PKI_MSG_OBJ, and the PKI certificate-request object,
PKI_CERT_REQ_OBJ. You encapsulate the PKI certificate request in the PKI message
object. Later, you use the PKI_MSG_OBJ and PKI_CERT_RESP_OBJ object for the
certificate-response message.

For general information about how to create a PKI request message, see “Creating a
PKI Request Message” on page 137. For an example of a PKI certificate request, see
the “PKI Transaction Samples and Examples” chapter in the Advanced Developer’s
Guide.

PKI Certificate-Request Object Functions
You must use a Cert-C function to view or modify information in a PKI_CERT_REQ_OBJ
object. You cannot assume that the PKI_CERT_REQ_OBJ object points to any specific
information. Some examples of the functions that Cert-C provides to work with a PKI
certificate-request object are listed in the following tables.

Create or Destroy PKI_CERT_REQ_OBJ Functions

Set or Modify PKI_CERT_REQ_OBJ Functions

Function Description

C_CreatePKICertReqObject Creates and initializes a PKI certificate-request object.

C_DestroyPKICertReqObject Destroys the PKI certificate-request object and frees any
memory associated with it.

Function Description

C_SetPKICertReqCertTemplate Sets the certificate-template object.

C_SetPKICertReqControls Sets the controls which are attributes affecting
certificate issuance.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 14 9

PKI Certificate-Response Object
Get PKI_CERT_REQ_OBJ Functions

PKI Certificate-Response Object
Use the PKI_CERT_RESP_OBJ object to parse the initialization response or certification
response received from the certificate server.

For an example that demonstrates a PKI certificate response, see the Advanced
Developer’s Guide.

PKI Certificate-Response Object Functions
You must use a Cert-C function to view or modify information in a
PKI_CERT_RESP_OBJ object. You cannot assume that the PKI_CERT_RESP_OBJ object
points to any specific information. Some examples of the functions that Cert-C
provides to work with a PKI certificate request object are listed in the following tables.

C_SetPKICertReqID Sets the certificate-request ID to match request and
response.

C_SetPKICertReqPOPType Sets the POP type.

C_SetPKICertReqRegInfo Sets regInfo, the supplementary information.

Function Description

C_GetPKICertReqCertTemplate Gets the certificate-template object.

C_GetPKICertReqControls Gets the value of controls that are attributes affecting
certificate issuance.

C_GetPKICertReqID Gets the value of certificate-request ID to match
request and response.

C_GetPKICertReqPOPType Gets the value of POP type.

C_GetPKICertReqRegInfo Gets the supplementary information regInfo.

Function Description
1 5 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Certificate-Response Object Functions
Create or Destroy PKI_CERT_RESP_OBJ Functions

Set or Modify PKI_CERT_RESP_OBJ Functions
These functions are usually called by the service provider as it parses the incoming
PKI message.

Get PKI_CERT_RESP_OBJ Functions
These functions are usually called by your application to extract information
populated by the service provider.

Function Description

C_CreatePKICertRespObject Creates and initializes a PKI certificate-response object.

C_DestroyPKICertRespObject Destroys the PKI certificate-response object and frees
any memory associated with it.

Function Description

C_SetPKICertRespCACerts Sets the list of CA CERT_OBJs.

C_SetPKICertRespCertReqID Sets the ID to match request and response.

C_SetPKICertRespRegInfo Sets regInfo, the supplementary
information.

C_SetPKICertRespRequestedCert Sets the requested certificate.

C_SetPKICertRespRequestedPrivateKey Sets the requested private key.

C_SetPKICertRespStatus Sets the certification status for the
response.

Function Description

C_GetPKICertRespCACerts Gets the list of CA CERT_OBJs.

C_GetPKICertRespCertReqID Gets the ID to match request and response.

C_GetPKICertRespRegInfo Gets regInfo, the supplementary
information.

C_GetPKICertRespRequestedCert Gets the requested certificate.

C_GetPKICertRespRequestedPrivateKey Gets the requested private key.

C_GetPKICertRespStatus Gets the certification status.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 15 1

PKI Certificate-Confirmation Request Object
PKI Certificate-Confirmation Request
Object
Use the PKI_CERT_CONF_REQ_OBJ object to send a confirmation to a CA or RA to accept
or reject a certificate.

For an example that demonstrates a PKI certificate confirmation-request object, see
“Step 7b: Create a PKI Message for a confirmation message” of the “CMP Certificate
Request Example,” in the Advanced Developer’s Guide.

PKI Certificate-Confirmation Request Object
Functions
You must use a Cert-C function to view or modify information in a
PKI_CERT_CONF_REQ_OBJ object. You cannot assume that the PKI_CERT_CONF_REQ_OBJ
object points to any specific information. Some examples of the functions that Cert-C
provides to work with a PKI certificate-confirmation request object are listed in the
following tables.

Create or Destroy PKI_CERT_CONF_REQ_OBJ Functions

Set or Modify PKI_CERT_CONF_REQ_OBJ Functions

Function Description

C_CreatePKICertConfReqObject Creates a certificate-confirmation request object.

C_DestroyPKICertConfReqObject Destroys the PKI certificate-confirmation request
object and frees any memory associated with it.

Function Description

C_SetPKICertConfReqCert Sets the certificate to confirm in a
certificate-confirmation request object.

C_SetPKICertConfReqCertReqId Sets the certificate-request ID of a
certificate-confirmation request object.
1 5 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Certificate-Confirmation Request Object Functions
Get PKI_CERT_CONF_REQ_OBJ Functions

C_SetPKICertConfReqConfirmStatus Sets the confirmation status of a
certificate-confirmation request object.

C_SetPKICertConfReqStatus Sets the status information of a
certificate-confirmation request object.

Function Description

C_GetPKICertConfReqCert Gets the certificate needed to confirm from a
certificate-confirmation request object.

C_GetPKICertConfReqCertReqId Gets the certificate-request ID from a
certificate-confirmation request object.

C_GetPKICertConfReqConfirmStatus Gets the confirmation status from a
certificate-confirmation request object.

C_GetPKICertConfReqStatus Gets status info from a certificate-confirmation
request object.

Function Description
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 15 3

PKI Certificate-Confirmation Response Object
PKI Certificate-Confirmation Response
Object
Use the PKI_CERT_CONF_RESP_OBJ to parse the confirmation response from the
certificate server. For the current Cert-C version, all Cert-C PKI service provider
supported certificate-confirmation response messages do not actually contain any
information. This is why the certificate-confirmation response object only has create
and destroy methods.

For an example that demonstrates a PKI certificate-confirmation response object, see
“Step 7f: Process the confirmation response” of the “CMP Certificate Request
Example,” in the Advanced Developer’s Guide.

PKI Certificate-Confirmation Response Object
Functions
You must use a Cert-C function to view or modify information in a
PKI_CERT_CONF_RESP_OBJ object. You cannot assume that the
PKI_CERT_CONF_RESP_OBJ object points to any specific information. Some examples of
the functions that Cert-C provides to work with a PKI certificate-confirmation
response object are listed in the following table.

Create or Destroy PKI_CERT_CONF_RESP_OBJ Functions

Function Description

C_CreatePKICertConfRespObject Creates a certificate-confirmation response
object.

C_DestroyPKICertConfRespObject Destroys the PKI certificate-confirmation response
object and frees any memory associated with it.
1 5 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Key-Update Request Object
PKI Key-Update Request Object
Use the PKI_KEY_UPDATE_REQ_OBJ to send a key-update request for a certificate to the
CA/RA.

PKI_KEY_UPDATE_REQ_OBJ is defined as a PKI_CERT_REQ_OBJ object in the pkikumsg.h
header file. The C_Get*, C_Set*, or modify APIs that apply to PKI_CERT_REQ_OBJ also
apply to PKI_KEY_UPDATE_REQ_OBJ.

For an example that demonstrates a PKI key-update request object, see “PKI
Transaction Samples and Examples” chapter in the Advanced Developer’s Guide.

PKI Key-Update Request Object Functions
You must use a Cert-C function to view or modify information in a
PKI_KEY_UPDATE_REQ_OBJ object. You cannot assume that the
PKI_KEY_UPDATE_REQ_OBJ object points to any specific information. Some examples of
the functions that Cert-C provides to work with a PKI key-update request object are
listed in the following table.

Create or Destroy PKI_KEY_UPDATE_REQ_OBJ Functions

Get, Set, or Modify PKI_KEY_UPDATE_REQ_OBJ Functions
The C_Get*, C_Set*, or modify APIs that apply to PKI_CERT_REQ_OBJ also apply to
PKI_KEY_UPDATE_REQ_OBJ. For a list of these API’s, see “PKI Certificate-Request Object
Functions” on page 149.

Function Description

C_CreatePKIKeyUpdateReqObject Creates and initializes a PKI key-update request
object.

C_DestroyPKIKeyUpdateReqObject Destroys the PKI key-update request object and
frees any memory associated with it.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 15 5

PKI Key-Update Response Object
PKI Key-Update Response Object
Use the PKI_KEY_UPDATE_RESP_OBJ object to parse the key-update response received
from the certificate server.

PKI_KEY_UPDATE_RESP_OBJ is defined as a PKI_CERT_RESP_OBJ object in the
pkikumsg.h header file. The C_Get*, C_Set*, or modify APIs that apply to
PKI_CERT_RESP_OBJ also apply to PKI_KEY_UPDATE_RESP_OBJ.

For an example that demonstrates a PKI key-update response object, see the Advanced
Developer’s Guide.

PKI Key-Update Response Object Functions
You must use a Cert-C function to view or modify information in a
PKI_KEY_UPDATE_RESP_OBJ object. You cannot assume that the
PKI_KEY_UPDATE_RESP_OBJ object points to any specific information. Some examples
of the functions that Cert-C provides to work with a PKI key-update response object
are listed in the following table.

Create or Destroy PKI_KEY_UPDATE_RESP_OBJ Functions

Get, Set, or Modify PKI_KEY_UPDATE_RESP_OBJ Functions
The C_Get*, C_Set*, or modify APIs that apply to PKI_CERT_RESP_OBJ also apply to
PKI_KEY_UPDATE_RESP_OBJ. For a list of these APIs, see “PKI Certificate-Response
Object Functions” on page 150.

Function Description

C_CreatePKIKeyUpdateRespObject Creates and initializes a PKI key-update
response object.

C_DestroyPKIKeyUpdateRespObject Destroys the PKI key-update response object and
frees any memory associated with it.
1 5 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Revocation Request Object
PKI Revocation Request Object
Use the PKI_REVOKE_REQ_OBJ to send a certificate-revocation request to the CA/RA to
revoke one or more certificates.

For an example that demonstrates a PKI certificate-revocation request object, see the
“PKI Transaction Samples and Examples” chapter of the Advanced Developer’s Guide.

PKI Revocation Request Object Functions
You must use a Cert-C function to view or modify information in a
PKI_REVOKE_REQ_OBJ object. You cannot assume that the PKI_REVOKE_REQ_OBJ object
points to any specific information. Some examples of the functions that Cert-C
provides to work with a PKI certificate-revocation request object are listed in the
following table.

Create or Destroy PKI_REVOKE_REQ_OBJ Functions

Set or Modify PKI_REVOKE_REQ_OBJ Functions

Function Description

C_CreatePKIRevokeReqObject Creates and initializes a PKI certificate-revocation
request object.

C_DestroyPKIRevokeReqObject Destroys the PKI certificate-revocation request object
and frees any memory associated with it.

Function Description

C_SetPKIRevokeReqBadSinceDate Sets the date when the requested certificate
is invalid to the PKI certificate-revocation
request object.

C_SetPKIRevokeReqExtensions Sets the value of the CRL entry extensions in
the PKI certificate-revocation request object.

C_SetPKIRevokeReqRevocationReason Sets the revocation reason in the PKI
certificate-revocation request object.

C_SetPKIRevokeReqRevokeCert Sets the details of the certificate to be
revoked in the PKI certificate-revocation
request object.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 15 7

PKI Revocation Response Object
Get PKI_REVOKE_REQ_OBJ Functions

PKI Revocation Response Object
Use the PKI_REVOKE_RESP_OBJ object to parse the certificate-revocation response
received from the certificate server.

For an example that demonstrates a PKI certificate-revocation response object, see the
“PKI Transaction Samples and Examples” chapter in the Advanced Developer’s Guide.

PKI Revocation Response Object Functions
You must use a Cert-C function to view or modify information in a
PKI_REVOKE_RESP_OBJ object. You cannot assume that the PKI_REVOKE_RESP_OBJ
object points to any specific information. Some examples of the functions that Cert-C
provides to work with a PKI certificate-revocation response object are listed in the
following table.

Function Description

C_GetPKIRevokeReqBadSinceDate Gets the date when the requested certificate
is invalid from the PKI certificate-revocation
request object.

C_GetPKIRevokeReqExtensions Gets the crlEntry extensions from the PKI
certificate-revocation request object. This is a
read-only value.

C_GetPKIRevokeReqRevocationReason Gets the value of the revocation reason in the
PKI certificate-revocation request object.

C_GetPKIRevokeReqRevokeCert Gets the information related to the certificate
that is being revoked from the PKI
certificate-revocation request object into a
certificate object.
1 5 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Revocation Response Object Functions
Create or Destroy PKI_REVOKE_RESP_OBJ Functions

Set or Modify PKI_REVOKE_RESP_OBJ Functions

Get PKI_REVOKE_RESP_OBJ Functions

Function Description

C_CreatePKIRevokeRespObject Creates and initializes the PKI certificate-revocation
response object.

C_DestroyPKIRevokeRespObject Destroys the PKI certificate-revocation response
object and frees any memory associated with it.

Function Description

C_SetPKIRevokeRespCertID Sets the values of the PKI_CERT_IDENTIFIER structure
in the PKI certificate-revocation response object.

C_SetPKIRevokeRespCRLs Sets the value of the list of CRLs into the PKI
certificate-revocation response object.

C_SetPKIRevokeRespStatus Sets the value of the PKI_STATUS_INFO_OBJ in the PKI
certificate-revocation response object.

Function Description

C_GetPKIRevokeRespCertID Gets the value of the PKI_CERT_IDENTIFIER structure
field(s) in the PKI certificate-revocation response object.

C_GetPKIRevokeRespCRLs Gets the LIST_OBJ of crls from the PKI
certificate-revocation response object.

C_GetPKIRevokeRespStatus Gets the value of the PKI_STATUS_INFO_OBJ object
from the PKI certificate-revocation response object.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 15 9

PKI Error-Message Object
PKI Error-Message Object
Use the PKI_ERROR_MESSAGE_OBJ to convey error information for a PKI message.

For an example that demonstrates a PKI error message object, see the “PKI
Transaction Samples and Examples” chapter in the Advanced Developer’s Guide.

PKI Error-Message Object Functions
You must use a Cert-C function to view or modify information in a
PKI_ERROR_MESSAGE_OBJ object. You cannot assume that the PKI_ERROR_MESSAGE_OBJ
object points to any specific information. Some examples of the functions that Cert-C
provides to work with a PKI error-message object are listed in the following tables.

Create or Destroy PKI_ERROR_MESSAGE_OBJ Functions

Set or Modify PKI_ERROR_MESSAGE_OBJ Functions

Function Description

C_CreatePKIErrorMsgObject Creates and initializes a PKI error-message object.

C_DestroyPKIErrorMsgObject Destroys the PKI error-message object and frees any
memory associated with it.

Function Description

C_SetPKIFailInfo Sets additional information about failure cases in a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.

C_SetPKIFailInfoAux Sets the PKI service-provider-specific failure code in a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.

C_SetPKIFailInfoAuxString Sets a list of service-provider-specific failure strings in a
PKI_ERROR_MSG_OBJ.

C_SetPKIStatus Sets the overall PKI status in a PKI_STATUS_INFO_OBJ
or a PKI_ERROR_MSG_OBJ.

C_SetPKIStatusString Sets a list of NUL-terminated text strings, which represent
the status value, in a PKI_STATUS_INFO_OBJ or a
PKI_ERROR_MSG_OBJ. This text is displayed to a user.
1 6 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Error-Message Object Functions
Get PKI_ERROR_MESSAGE_OBJ Function

Function Description

C_GetPKIFailInfo Gets additional information about failure cases from a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.

C_GetPKIFailInfoAux Gets the PKI service-provider-specific failure code from a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.

C_GetPKIFailInfoAuxString Gets a list of service-provider-specific failure strings from
a PKI_ERROR_MSG_OBJ.

C_GetPKIStatus Gets the overall PKI status from a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.

C_GetPKIStatusString Gets a list of NUL-terminated text strings, which represent
the status value, from a PKI_STATUS_INFO_OBJ or a
PKI_ERROR_MSG_OBJ. This text is displayed to a user.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 16 1

Certificate-Template Object
Certificate-Template Object
Use the PKI_CERT_TEMPLATE_OBJ to represent the template that specifies the
information that goes into a certificate in the certificate request process. It is different
from the CERT_OBJ; all the fields in the PKI_CERT_TEMPLATE_OBJ object are optional.

The PKI_MSG_OBJ does not directly encapsulate the PKI_CERT_TEMPLATE_OBJ object.
PKI_CERT_TEMPLATE_OBJ can be encapsulated by either the PKI_CERT_REQ_OBJ or
PKI_KEY_UPDATE_REQ_OBJ object, which in turn is encapsulated by the PKI_MSG_OBJ
object.

For an example that demonstrates a PKI certificate-template object, see the “PKI
Transaction Samples and Examples” chapter in the Advanced Developer’s Guide.

PKI Certificate-Template Object Functions
You must use a Cert-C function to view or modify information in a
PKI_CERT_TEMPLATE_OBJ object. You cannot assume that the PKI_CERT_TEMPLATE_OBJ
object points to any specific information. Some examples of the functions that Cert-C
provides to work with a PKI certificate-template object are listed in the following
tables.

Create or Destroy PKI_CERT_TEMPLATE_OBJ Functions

Function Description

C_CreatePKICertTemplateObject Creates and initializes a PKI certificate-template
object.

C_DestroyPKICertTemplateObject Destroys the PKI certificate-template object and
frees any memory associated with it.
1 6 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Certificate-Template Object Functions
Set or Modify PKI_CERT_TEMPLATE_OBJ Functions

Get PKI_CERT_TEMPLATE_OBJ Functions

Function Description

C_SetCertTemplateExtensions Sets the certificate extensions object that
contains X.509 v3 extensions for the
certificate.

C_SetCertTemplateIssuerName Sets the issuer name that contains the
name of the issuer that signed the
certificate.

C_SetCertTemplateIssuerUniqueID Sets the issuer unique ID that contains the
certificate’s issuer’s unique identifier.

C_SetCertTemplatePublicKey Sets the certificate's DER-encoded public
key.

C_SetCertTemplateSerialNumber Sets the certificate’s serial number.

C_SetCertTemplateSignatureAlgorithm Sets the certificate’s signature algorithm.

C_SetCertTemplateSubjectName Sets the certificate’s subject name.

C_SetCertTemplateSubjectUniqueID Sets the subject unique ID that contains the
certificate subject’s unique identification.

C_SetCertTemplateValidityEnd Sets the validity end time of the certificate.

C_SetCertTemplateValidityStart Sets the validity start time of the certificate.

C_SetCertTemplateVersion Sets the certificate’s version number.

Function Description

C_GetCertTemplateExtensions Gets the certificate’s extensions object that
contains X.509 v3 extensions for the
certificate.

C_GetCertTemplateIssuerName Gets the issuer name that contains the
name of the issuer that signed the
certificate.

C_GetCertTemplateIssuerUniqueID Gets the issuer unique ID that contains the
certificate’s issuer’s unique identifier.

C_GetCertTemplatePublicKey Gets the certificate’s DER-encoded public
key.

C_GetCertTemplateSerialNumber Gets the certificate’s serial number.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 16 3

PKI Certificate-Template Object Functions
C_GetCertTemplateSignatureAlgorithm Gets the signature algorithm that indicates
the algorithm used to create the certificate
signature.

C_GetCertTemplateSubjectName Gets the certificate’s subject name.

C_GetCertTemplateSubjectUniqueID Gets the subject unique ID that contains the
certificate subject’s unique identification.

C_GetCertTemplateValidityEnd Gets the validity end time of the certificate.

C_GetCertTemplateValidityStart Gets the validity start time of the certificate.

C_GetCertTemplateVersion Gets the certificate’s version number.

C_GetPKICertTemplateFromCertObject Gets information from a certificate object to
populate a certificate-template object.

Function Description
1 6 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

PKI Status-Information Object
PKI Status-Information Object
Use the PKI_STATUS_INFO_OBJ to represent provider-specific status and failure
information.

The PKI_MSG_OBJ does not directly encapsulate the PKI_STATUS_INFO_OBJ object.
PKI_STATUS_INFO_OBJ can be encapsulated by the PKI_CERT_RESP_OBJ,
PKI_KEY_UPDATE_RESP_OBJ, PKI_REVOKE_RESP_OBJ, or PKI_CERT_CONF_REQ_OBJ
objects, which in turn is encapsulated by the PKI_MSG_OBJ object.

For an example that demonstrates a PKI status-information object, see the “PKI
Transaction Samples and Examples” chapter in the Advanced Developer’s Guide.

PKI Status-Information Object Functions
You must use a Cert-C function to view or modify information in a
PKI_STATUS_INFO_OBJ object. You cannot assume that the PKI_STATUS_INFO_OBJ
object points to any specific information. Some examples of the functions that Cert-C
provides to work with a PKI status-information object are listed in the following
tables.

Create or Destroy PKI_STATUS_INFO_OBJ Functions

Set or Modify PKI_STATUS_INFO_OBJ Functions
The following C_Set* APIs are also used with the PKI error object.

Function Description

C_CreatePKIStatusInfoObject Creates and initializes a PKI status-information
object.

C_DestroyPKIStatusInfoObject Destroys the PKI status-information object and frees
any memory associated with it.

Function Description

C_SetPKIFailInfo Sets additional information about failure cases in a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.

C_SetPKIFailInfoAux Sets the PKI service-provider-specific failure code in a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.
C h a p t e r 9 C r e a t i n g a P K I M e s s a g e 16 5

PKI Status-Information Object Functions
Get PKI_STATUS_INFO_OBJ Function
The following C_Get* APIs are also used with the PKI error object.

C_SetPKIStatus Sets the overall PKI status in a PKI_STATUS_INFO_OBJ or a
PKI_ERROR_MSG_OBJ.

C_SetPKIStatusString Sets a list of NUL-terminated text strings, which represent the
status value, in a PKI_STATUS_INFO_OBJ or a
PKI_ERROR_MSG_OBJ. This text is displayed to a user.

Function Description

C_GetPKIFailInfo Gets additional information about failure cases from a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.

C_GetPKIFailInfoAux Gets the PKI service-provider-specific failure code from a
PKI_STATUS_INFO_OBJ or a PKI_ERROR_MSG_OBJ.

C_GetPKIStatus Gets the overall PKI status from a PKI_STATUS_INFO_OBJ or
a PKI_ERROR_MSG_OBJ.

C_GetPKIStatusString Gets a list of NUL-terminated text strings, which represent the
status value, from a PKI_STATUS_INFO_OBJ or a
PKI_ERROR_MSG_OBJ. This text is displayed to a user.

Function Description
1 6 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 10

Creating an X.509 Certificate
Cert-C represents X.509 certificate information with a CERT_OBJ object. You use this
object to store and pass information about a particular certificate. This chapter
presents the CERT_OBJ object and its related APIs. Also included are several examples
that demonstrate how you can use the CERT_OBJ and its APIs.
16 7

Certificate Object
Certificate Object
Cert-C represents certificate information with a CERT_OBJ object. Use the CERT_OBJ
object to store and pass information about a particular certificate.

A certificate’s version can be CERT_VERSION_1, CERT_VERSION_2, or CERT_VERSION_3.

• If a certificate’s version is CERT_VERSION_2, then it can contain an issuerUniqueID
and a subjectUniqueID.

• If a certificate’s version is CERT_VERSION_3, then it can also include an
extensionsObject, which represents X.509 v3 certificate extensions.

Certificate-Object Functions
You must use a Cert-C function to view or modify information in a CERT_OBJ object.
You cannot assume that the CERT_OBJ points to any specific information. Some
examples of the functions that Cert-C provides to manipulate certificates and check
certificate signatures are listed in the following table.

Create, Use, or Destroy CERT_OBJ Functions

Function Description

C_BuildCertPath Constructs a path from a given certificate to a trusted
certificate or CRL.

C_CreateCertObject Creates a certificate object.

C_DestroyCertObject Destroys a certificate object, freeing the memory that the
certificate object occupied.

C_SignCert Signs a certificate object.

C_VerifyCertSignature Verifies a CERT_OBJ’s signature.
1 6 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a Certificate Object
Set CERT_OBJ Functions

Get CERT_OBJ Functions

Creating a Certificate Object
This example shows you how to create a CERT_OBJ object and set it with a binary BER
encoding of an X.509 certificate. You can also set a CERT_OBJ object with the data from
a CERT_FIELDS structure.

Step 1: Create a CERT_OBJ
Call the C_CreateCertObject function to create a CERT_OBJ and to allocate the needed
memory. For more information about the C_CreateCertObject function, see the API
Reference.

The C_CreateCertObject function takes a CERTC_CTX as a parameter. When you create
a CERT_OBJ object, it contains a reference to the given CERTC_CTX. The Cert-C context is

Function Description

C_SetCertBER Sets the BER encoding of a certificate object.

C_SetCertFields Sets a certificate object to the values provided in a
CERT_FIELDS structure.

C_SetCertInnerBER Sets the BER encoding of the inner portion of a certificate
object.

Function Description

C_GetCertDER Gets the DER encoding of a certificate object.

C_GetCertFields Gets the content of the CERT_FIELDS structure in the certificate
object.

C_GetCertInnerDER Gets the DER encoding of the inner portion of a certificate object.

int C_CreateCertObject (
 CERT_OBJ *certObj, /* (out) Certificate object */
 CERTC_CTX ctx); /* (in) Cert-C context */
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 16 9

Creating a Certificate Object
needed when you use this certificate object with a service that requires a CERTC_CTX.
For example, a CERTC_CTX is needed for an initialized pseudorandom number
generator, a surrender context, or an extension handler.

In this example, assume that you have an initialized CERTC_CTX, ctx.

Step 2: Set the certificate information
There are two ways to set information in a CERT_OBJ object. If you have a binary
BER-encoded X.509 Certificate, see step 2a. Alternatively, you can supply the
information in a CERT_FIELDS structure, see step 2b.

If you have Base64-encoded data that you wish to convert to binary, see the samples/
b64/b64.c sample program.

Step 2a: Set the CERT_OBJ with the BER-encoded X.509 certificate
information

Set the CERT_OBJ object with the BER-encoded X.509 certificate information, using the
C_SetCertBER function. For more information about the C_SetCertBER function, see
the API Reference.

Call the C_SetCertBER function and pass it an ITEM, certBER, that contains the
certificate binary.

CERT_OBJ certObj = (CERT_OBJ)NULL_PTR;

status = C_CreateCertObject (&certObj, ctx);
if (status != 0)
 goto CLEANUP;

int C_SetCertBER (
 CERT_OBJ certObj, /* (in/out) Certificate object */
 unsigned char *ber, /* BER-encoded certificate */
 unsigned int berLen /* Length of BER-encoded certificate */
);

status = C_SetCertBER (certObj, certBER.data, certBER.len);
if (status != 0)
 goto CLEANUP;
1 7 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a Certificate Object
At this point, certObj contains the X.509 Certificate information.

Step 2b: Set the CERT_OBJ with the CERT_FIELDS Information

First, you need to prepare a CERT_FIELDS structure. For more information about the
CERT_FIELDS structure, see the API Reference.

You need to create a NAME_OBJ object for the issuer name and another one for the
subject name. For more information on creating a NAME_OBJ, see “Creating a Name
Object” on page 105.

You also need to create an EXTENSIONS_OBJ object to contain any certificate extensions.
For more information on creating an EXTENSIONS_OBJ, see “Creating an Extensions
Object” on page 257.

Instead of creating the NAME_OBJ and EXTENSIONS_OBJ, you can call the
C_GetCertFields function on the blank CERT_OBJ, which you created in step 1. The
C_GetCertFields function retrieves the already created NAME_OBJ objects and
EXTENSIONS_OBJ object.

Populate the remaining CERT_FIELDS fields with the desired values. For more
information about the remaining CERT_FIELDS fields, see the API Reference.

Call the C_SetCertFields function to set a copy of the CERT_FIELDS information into

typedef struct CERT_FIELDS {
 UINT2 version;
 ITEM serialNumber;
 int signatureAlgorithm;
 NAME_OBJ issuerName;
 struct {
 UINT4 start;
 UINT4 end;
 } validity;
 NAME_OBJ subjectName;
 ITEM publicKey;
 BIT_STRING issuerUniqueID; /* v2 and v3 only. Set the data field */
 /* to NULL_PTR, len to 0 if omittied */
 BIT_STRING subjectUniqueID; /* v2 and v3 only. Set the data field */
 /* to NULL_PTR, len to 0 if omitted */
 EXTENSIONS_OBJ certExtensions; /* v3 only. Set to */
 /* (EXTENSIONS_OBJ)NULL_PTR */
 /* if omitted */
 POINTER reserved; /* Reserves for future expansion */
} CERT_FIELDS;
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 17 1

Creating a Certificate Object
the CERT_OBJ object. For more information about the C_SetCertFields function, see
the API Reference.

After calling this function, the value in certFields becomes the actual value of
certObj.

You now sign the certificate with the issuer’s private key, using the C_SignCert
function. For more information about the C_SignCert function, see the API Reference.

The B_KEY_OBJ can be a key object that points to a private key on a hardware device.
For more information about the B_KEY_OBJ object, see Appendix A. If you are going to
use a hardware device, make sure you use the CERTC_CTX associated with the
necessary service providers, when you call C_CreateCertObject to create the
CERT_OBJ. For more information, see “Cert-C PKCS #11 Database Service Provider”
and “Cert-C CryptoAPI Database Service Provider” in the “Service Provider” section
of the API Reference. For this example, assume that you already have a B_KEY_OBJ
caPrivateKey that contains the issuer’s private key.

int C_SetCertFields (
 CERT_OBJ certObj, /* (in/out) Certificate object */
 CERT_FIELDS *certFields /* Certificate fields */
);

CERT_FIELDS certFields;

status = C_SetCertFields (certObj, *certFields);
if (status != 0)
 goto CLEANUP;

int C_SignCert (
 CERT_OBJ certObj, /* (mod) Certificate object */
 B_KEY_OBJ privateKey /* Signing key */
 . . .
);

status = C_SignCert (certObj, caPrivateKey);
if (status != 0)
 goto CLEANUP;
1 7 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a Certificate Object
Step 3: Destroy the CERT_OBJ object
You no longer need the CERT_OBJ object, so you should destroy it now. Any object you
create you must destroy, making sure you have saved any information you need later.
This frees up any memory allocated by Cert-C. If an object is NULL_PTR, then Cert-C
does nothing. That is why you should always initialize all objects to NULL_PTR and call
the C_Destroy* function later. If there is an error before creating an object, then the
C_Destroy* function does not do any damage.

CLEANUP:
 C_DestroyCertObject (&certObj);
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 17 3

Fulfilling the PKCS #10 Certificate Request
Fulfilling the PKCS #10 Certificate Request
In this example, you assume the role of a CA. In this capacity, you receive the
DER-encoding of a certificate request.

To build a certificate you must get the certificate information out of the certificate
request and into a certificate. When you receive a certificate request, you must also
check whether the requestor has included some extra attributes. Since that
information will not be part of the certificate, you need to capture that data separately.
An attribute may include v3 extensions. For more information about building
extensions, see “Creating an Extensions Object” on page 257.

You create and initialize a certificate object. Next, you create a PKCS #10 object and fill
it with the BER-encoded certificate request. You verify the certificate request’s
signature and extract the PKCS10_FIELDS information. Then you fill the CERT_FIELDS
structure with information from the PKCS10_FIELDS structure, and with other
information. You set the CERT_OBJ with the updated CERT_FIELDS information. Next,
you take the certificate object you just created and sign it. Then, you get the DER
encoding of the certificate, which can be sent to the certificate requestor or stored in a
file. Finally, you can destroy the PKCS #10 object.

Step 1: Create a certificate and a PKCS #10 object
You need to create a certificate object and a PKCS #10 object. You have already
created an attributes object (see “Creating an Attributes Object” on page 115). For
more information about C_CreateCertObject and C_CreatePKCS10Object, see the API
Reference.

Step 1a: Create a certificate object

Using the C_CreateCertObject function, you declare a variable to be CERT_OBJ and
pass its address as the argument. In the second argument, you pass Cert-C a
previously initialized Cert-C context. A properly cast NULL_PTR is not an option for the
this argument.

For more information about initializing a Cert-C context, see “Initializing the Cert-C

int C_CreateCertObject (
 CERT_OBJ *certObj, /* (out) Cert object */
 CERTC_CTX ctx /* Cert-C context */
);
1 7 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Fulfilling the PKCS #10 Certificate Request
Context” on page 75.

Step 1b: Create a PKCS #10 object

In “Creating a PKCS #10 Certificate Request” on page 123, as the certificate requestor,
you created a DER-encoded PKCS #10 certificate request. Now, as the CA, you create
and initialize a PKCS10_OBJ with that information. Using the C_CreatePKCS10Object
function, you create a PKCS10_OBJ and pass it the same initialized ctx. For more
information about C_CreatePKCS10Object, see the API Reference.

Step 2: Enter the PKCS #10 certificate information
Using the C_SetPKCS10BER function, you set the PKCS10_OBJ with the BER-encoded
PKCS #10 certificate request. For more information about the C_SetPKCS10BER
function, see the API Reference.

The first argument is the PKCS10_OBJ you just created. The second argument points to
the BER encoding of a PKCS #10 object. In this example, assume you have an ITEM
pkcs10BER that contains the BER-encoded PKCS #10 binary.

CERT_OBJ newCertificateObj = (CERT_OBJ)NULL_PTR;

status = C_CreateCertObject (&newCertificateObj, ctx);
if (status != 0)
 goto CLEANUP;

PKCS10_OBJ pkcs10Obj = (PKCS10_OBJ)NULL_PTR;

status = C_CreatePKCS10Object (ctx, &pkcs10Obj);
if (status != 0)
 goto CLEANUP;

int C_SetPKCS10BER(
 PKCS10_OBJ pkcs10Object, /* (mod) PKCS#10 object */
 unsigned char *ber, /* (in) Input buffer containing BER */
 unsigned int berLen /* (in) Input buffer length */
);

ITEM pkcs10BER;
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 17 5

Fulfilling the PKCS #10 Certificate Request
You now have a PKCS10_OBJ that contains the BER-encoded certificate request.

Step 3: Verify the PKCS #10 signature, set a CERT_FIELDS, and sign
the X.509 certificate
In this step, you perform the operations to verify the PKCS #10 signature, retrieve the
PKCS10_FIELDS information, set the CERT_FIELDS structure with the PKCS #10
information, and sign the X.509 certificate.

Step 3a: Verify the PKCS #10 signature
You must prove the entity that generated and sent the PKCS #10 certificate request to
you actually has access to the private key that corresponds to the public key contained
in the certificate request. The certificate request was signed by the requestor using the
subject’s private key, so you can verify the signature using the public key contained in
the PKCS #10 certificate request.

Using the C_VerifyPKCS10Signature function, you verify the signature. For more
information about C_VerifyPKCS10Signature, see the API Reference.

Step 3b: Retrieve the PKCS10_FIELDS information
Next, you initialize a PKCS10_FIELDS structure and get the individual PKCS #10 fields
from the PKCS #10 object. Using the C_GetPKCS10Fields function, you get the PKCS
#10 information. For more information about C_GetPKCS10Field, see the API
Reference.

status = C_SetPKCS10BER (pkcs10Obj, pkcs10BER.data, pkcs10BER.len);
if (status != 0)
 goto CLEANUP;

status = C_VerifyPKCS10Signature (pkcs10Obj);
if (status != 0)
 goto CLEANUP;

PKCS10_FIELDS pkcs10Fields;

status = C_GetPKCS10Fields (pkcs10Obj, &pkcs10Fields);
if (status != 0)
 goto CLEANUP;
1 7 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Fulfilling the PKCS #10 Certificate Request
Step 3c: Fill the certificate object’s CERT_FIELDS structure
Now, you need to fill the CERT_0BJ’s CERT_FIELDS structure from the PKCS10_FIELDS
structure. You also sets the CERT_0BJ’s CERT_FIELDS structure with other information.
For more information about CERT_FIELDS, see the API Reference.

Using the C_GetCertFields function, you first get the blank CERT_FIELDS structure
from the new CERT_OBJ, which you just created.

You specify version to be CERT_VERSION_3 and signatureAlgorithm to be
SA_SHA1_WITH_RSA_ENCRYPTION. You will use this algorithm later to sign the
certificate.

You need to specify the new certificate’s serial number. As a CA, assume you have a
unique serial number available. You specify serialNumber to be this unique serial

typedef struct CERT_FIELDS {
 UINT2 version;
 ITEM serialNumber;
 int signatureAlgorithm;
 NAME_OBJ issuerName;
 struct {
 UINT4 start;
 UINT4 end;
 } validity;
 NAME_OBJ subjectName;
 ITEM publicKey;
 BIT_STRING issuerUniqueID; /* Version 2 and 3 only */
 BIT_STRING subjectUniqueID; /* Version 2 and 3 only */
 EXTENSIONS_OBJ certExtensions; /* Version 3 only */
 POINTER reserved; /* Reserved */
} CERT_FIELDS;

CERT_FIELDS newCertInfo;

status = C_GetCertFields (newCertificateObj, &newCertInfo);
if (status != 0)
 goto CLEANUP;

newCertInfo.version = CERT_VERSION_3;
newCertInfo.signatureAlgorithm = SA_SHA1_WITH_RSA_ENCRYPTION;
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 17 7

Fulfilling the PKCS #10 Certificate Request
number.

You need to set the issuer name for the new certificate. As a CA, assume you have the
BER-encoded issuer name.

The GetCAInfoFromStorage routine is not a Cert-C routine. It is a placeholder for a
routine that obtains the CA’s BER-encoded X.500 Name. You write this routine to best
fit your application.

You extract the subject name from the PKCS #10 certificate request and use it for the
subject name in the new certificate. Using C_GetNameDER, you extract the subject name
from pkcs10Fields, then using C_SetNameBER, you set newCertInfo’s subject name to
the subject name extracted from pkcs10Fields. For more information about
C_GetNameDER and C_SetNameBER, see the API Reference.

unsigned char newSerialNumber[4] = {
 1, 0, 0, 1
};

newCertInfo.serialNumber.data = newSerialNumber;
newCertInfo.serialNumber.len = sizeof (newSerialNumber);

ITEM caNameBERFromStorage = {NULL, 0};

status = GetCAInfoFromStorage (&caNameBERFromStorage.data,
 &caNameBERFromStorage.len);
if (status != 0)
 goto CLEANUP;

status = C_SetNameBER (newCertInfo.issuerName, caNameFromStorage.data,
 caNameFromStorage.len);
if (status != 0)
 goto CLEANUP;

ITEM subjectName = {NULL, 0};

status = C_GetNameDER (pkcs10Fields.subjectName, &subjectName.data,
 &subjectName.len);
if (status != 0)
 goto CLEANUP;
1 7 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Fulfilling the PKCS #10 Certificate Request
You set the validity start time to the current time and the expiration time to be a year
from now.

Finally, you set the new certificate’s publicKey field to the public key contained in
pkcs10Fields.publicKey.

At this stage, you have the option to initialize the newCertInfo.certExtensions
EXTENSIONS_OBJ. You created this EXTENSIONS_OBJ when you called the
C_GetCertFields function. For more information about how to do this, see “Reading
Extensions in an Attributes Object” on page 267.

Step 3d: Set CERT_OBJ with the new CERT_FIELDS information
You have just modified the CERT_FIELDS structure from newCertificateObj. Now, you
must call C_SetCertFields to reconcile the internal state of the CERT_OBJ with the
changes made to the CERT_FIELDS structure. The CERT_OBJ is not properly initialized
with the new data and cannot be used in any operations, until you do this step.

With these steps completed, you can go ahead and build the certificate.

Step 3e: Sign the X.509 certificate
You will now sign the certificate object. To sign the certificate, you use the C_SignCert

status = C_SetNameBER (newCertInfo.subjectName, subjectName.data,
 subjectName.len);
if (status != 0)
 goto CLEANUP;

T_time (&newCertInfo.validity.start);
newCertInfo.validity.end = certFields.validity.start +
 ((3600 * 24 * 365) - 1);

newCertInfo.publicKey.data = pkcs10Fields.publicKey.data;
newCertInfo.publicKey.len = pkcs10Fields.publicKey.len;

status = C_SetCertFields (newCertificateObj, &newCertInfo);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 17 9

Fulfilling the PKCS #10 Certificate Request
function. For more information about C_SignCert, see the API Reference.

The B_KEY_OBJ can be a key object that points to a private key on a hardware device.
For more information about the B_KEY_OBJ object, see Appendix A. If you are going to
use a hardware device, then when you call C_CreateCertObject to create the
CERT_OBJ, make sure you use the CERTC_CTX associated with the necessary service
providers. For more information, see “Cert-C PKCS #11 Database Service Provider”
and “Cert-C CryptoAPI Database Service Provider” in the “Service Provider” section
of the API Reference. For this example, assume that you already have a B_KEY_OBJ
caPrivateKey that contains the issuer’s private key.

Step 4: Retrieve the X.509 certificate in DER format
You now have a signed certificate object, not an X.509 certificate. You need to get the
certificate information out of the CERT_OBJ and into a format other applications can
recognize, such as the DER-encoded format. To get the certificate information out of
the CERT_OBJ, you use the C_GetCertDER function.

For more information about C_GetCertDER, see the API Reference.

Cert-C returns an address to where you can go to find the certificate DER, not the
certificate information itself. You should copy the certificate information into a
database or a file.

int C_SignCert (
 CERT_OBJ certObj, /* (mod) Certificate object */
 B_KEY_OBJ privateKey /* Signing key */
);

status = C_SignCert (newCertificateObj, caPrivateKey);
if (status != 0)
 goto CLEANUP;

int C_GetCertDER (
 CERT_OBJ certObj, /* Certificate object */
 unsigned char **der, /* (out) DER-encoded cert */
 unsigned int *derLen /* (out) Length of DER-encoded cert */
);

ITEM certDer = {NULL, 0};
1 8 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Fulfilling the PKCS #10 Certificate Request
The RSA_WriteDataToFile routine is not a Cert-C routine; it is a demo utility routine.
For more information about Cert-C demo utilities, see the “Utilities” chapter in the
Advanced Developer’s Guide. You can use RSA_WriteDataToFile to write binary data to
a file.

You can now send the signed certificate to the certificate requestor.

Step 5: Destroy the PKCS #10 certificate object
You no longer need the PKCS10_OBJ, so you should destroy it now. Any object you
create you must destroy, making sure you have saved any information you need later.
This frees up any memory allocated by Cert-C. If an object is NULL_PTR, then Cert-C
does nothing. That is why you should always initialize all objects to NULL_PTR and call
the C_Destroy* function later. If there is an error before creating an object, then the
C_Destroy* function does not do any damage.

status = C_GetCertDER (newCertificate, &certDer.data, &certDer.len);
if (status != 0)
 goto CLEANUP;

status = RSA_WriteDataToFile (certDer.data, certDer.len,
 "Enter name of file to store cert binary");
if (status != 0)
 goto CLEANUP;

CLEANUP:
 C_DestroyPKCS10Object (&pkcs10Obj);
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 18 1

Manipulating Certificate Information
Manipulating Certificate Information
In the previous examples in this chapter, you created a certificate object. In this
example, assume that you have received a certificate from someone, from a CA, or
perhaps directly from the certificate holder. You want to read the information on the
certificate, verify the CA’s signature on the certificate, and extract the public key.

The steps ObtainCAPublicKey and C_VerifyCertSignature can be replaced by one
call to C_BuildCertPath to validate a certificate chain. For more information, see
“Validating a Certificate Path” on page 193. Most applications do not call the
C_VerifyCertSignature or C_ValidateCert functions directly; instead, they call
C_BuildCertPath to validate a certificate chain.

Step 1: Create a certificate object
In this example, assume you have received a certificate in the BER-encoded format
and placed it into a buffer. You have named the buffer certBER, and it is certBERLen
bytes long.

First, you need to create a certificate object. For more information about
C_CreateCertObject, see the API Reference.

Using the C_CreateCertObject function, you declare a variable to be CERT_OBJ and
pass its address as the argument. In the second argument, you pass Cert-C a
previously initialized Cert-C context. A properly cast NULL_PTR is not an option for the
this argument. For more information about initializing a Cert-C context, see
“Initializing the Cert-C Context” on page 75.

unsigned char *certBER;
unsigned int certBERLen;

int C_CreateCertObject (
 CERT_OBJ *certObj, /* (out) Cert object */
 CERTC_CTX ctx /* Cert-C context */
);

CERT_OBJ certObject = (CERT_OBJ)NULL_PTR;
B_KEY_OBJ caPublicKeyObject = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ certPublicKeyObject = (B_KEY_OBJ)NULL_PTR;
CERT_FIELDS certFields;
1 8 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Manipulating Certificate Information
Step 2: Enter the certificate information
Using the C_SetCertBER function, you set the CERT_OBJ with the BER-encoded
certificate. For more information about the C_SetCertBER function, see the API
Reference.

The first argument is the CERT_OBJ you just created. The second argument points to
the BER encoding of a certificate object. Assume that you have an ITEM certBER that
contains the BER-encoded certificate binary.

You now have a CERT_OBJ that contains the BER-encoded certificate information.

Step 3: Read the certificate information
Next, you want to get the certificate information into a readable format. You initialize
a CERT_FIELDS structure and fill it with the individual certificate fields from the
certificate object. Using the C_GetCertFields function, you get the certificate fields.
For more information about C_GetCertFields and CERT_FIELDS, see the API Reference.

Using the C_GetCertFields function, you give Cert-C a certificate object and the
address of a CERT_FIELDS structure. Cert-C places the certificate information at the

status = C_CreateCertObject (&certObject, ctx);
if (status != 0)
 goto CLEANUP;

int C_SetCertBER (
 CERT_OBJ certObj, /* (in/out) Certificate object */
 unsigned char *ber, /* BER-encoded certificate */
 unsigned int berLen /* Length of BER-encoded certificate */
);

status = C_SetCertBER (certObject, certBER, certBERLen);
if (status != 0)
 goto CLEANUP;

int C_GetCertFields (
 CERT_OBJ certObj, /* Certificate object */
 CERT_FIELDS *certFields /* (out) Certificate fields structure */
);
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 18 3

Manipulating Certificate Information
address. The memory that the pointer to the certificate information points to belongs
to Cert-C. You do not need to allocate or free that memory. Also, you should not
attempt to adjust the data yourself. The information remains unchanged until you call
a Cert-C routine that modifies or destroys the certificate object. To save this
information, you must copy it into a file or your own buffer.

You can now perform your own routines to extract specific certificate information.
The DisplayCertInfo and ObtainCAPublicKey routines are placeholders for code that
you create to extract certificate information.

DisplayCertInfo should extract and display the certificate information in a readable
format, while ObtainCAPublicKey should get the certificate issuer’s public key and
store it in a Crypto-C key object. For more information about creating a key object, see
“Using BSAFE Crypto-C” on page 287. A more comprehensive description on using
Crypto-C is available in the Crypto-C Developer’s Guide. The issuer’s public key is then
used to verify the CA’s signature on the certificate.

Step 4 Verify the certificate’s signature and extract the public key
In this step, you verify the certificate’s signature and extract the certificate’s public
key; then you can perform an operation with the extracted public key.

Step 4a: Verify the certificate’s signature
You must verify that the certificate sent to you does in fact belong to the certificate
subject and was issued by a trusted CA. The certificate was signed by the issuer using
the issuer’s private key. So, using the C_VerifyCertSignature function, you can
verify the signature by using the issuer’s public key. The ObtainCAPublicKey routine

CERT_FIELDS certFields;

status = C_GetCertFields (certObject, &certFields);
if (status != 0)
 goto CLEANUP;

status = DisplayCertInfo (&certFields);
if (status != 0)
 goto CLEANUP;

status = ObtainCAPublicKey (&certFields, &caPublicKeyObject);
if (status != 0)
 goto CLEANUP;
1 8 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Manipulating Certificate Information
in step 3 found the issuer’s certificate; it then obtained the issuer’s public key and
placed it in a Crypto-C key object. You use this public key to verify the CA’s signature
on the certificate. For more information about C_VerifyCertSignature, see the API
Reference.

Note: The variable parameter format makes this function backward-compatible
with BCERT v1.0.

To verify the CA’s signature on the certificate, you call the C_VerifyCertSignature
function. The first argument is the certificate object, which contains the certificate that
was sent to you. The second argument is a Crypto-C key object that contains the
issuer’s public key.

You have verified the CA’s signature on the certificate, so now you can safely use the
certificate.

Step 4b: Extract the certificate’s public key
Before you can do anything with the certificate, you need to extract the certificate’s
public key. The ExtractCertPublicKey routine is a placeholder for code that you will
create to extract the certificate’s public key. You write this routine to best fit your
application.

In this routine, you build a public-key object from the certificate subject’s public key.
To do this, you take the BER-encoding of the certificate subject’s public key, which is
the associated CERT_FIELDS’s publicKey field, and create a key object. For more
information about creating a key object, see “Using BSAFE Crypto-C” on page 287. A
more comprehensive description on using Crypto-C is in the Crypto-C Developer’s

int C_VerifyCertSignature (
 CERT_OBJ certObj, /* Certificate object */
 B_KEY_OBJ publicKey /* Verification key */
 . . .
);

status = C_VerifyCertSignature (certObject, caPublicKeyObject);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 0 C r e a t i n g a n X . 5 0 9 C e r t i f i c a t e 18 5

Manipulating Certificate Information
Guide.

Step 4c: Perform an operation using the certificate’s public key
Now that you have the certificate subject’s public key, you can perform operations
that require a public key. For example, you can create a digital envelope or verify
another signature. The UsePublicKey routine is a place holder for code you create that
uses a public key. You write this routine to best fit your application.

Step 5: Destroy the certificate and key objects
Any object you create you must destroy, making sure you have saved any
information you need later. This frees up any memory allocated by Cert-C. If an object
is NULL_PTR, then Cert-C does nothing. That is why you should always initialize all
objects to NULL_PTR and call the C_Destroy* function later. If there is an error before
creating an object, then the C_Destroy* function does not do any damage.

status = ExtractCertPublicKey (&certFields, &certPublicKeyObject);
if (status != 0)
 goto CLEANUP;

status = UsePublicKey (certPublicKeyObject);
if (status != 0)
 goto CLEANUP;

CLEANUP:
 C_DestroyCertObject (&certObject);
 B_DestroyKeyObject (&certPublicKeyObject);
 B_DestroyKeyObject (&caPublicKeyObject);
1 8 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 11

Verifying Certificates and CRLs
Cert-C provides APIs to verify that a certificate or CRL is valid. With these APIs you
construct a certificate path from the starting object (certificate or CRL), which you
want to verify, to a trusted certificate. This trusted certificate can be a trusted-root
certificate (self-signed) or it can be a certificate that you explicitly state is to be trusted.

The certificates in the certificate path must chain together by matching the
subject-issuer names. If extensions are available, then the certificates must chain
together by matching the subjectKeyIdentifier and authorityKeyIdentifier values.

Once a certificate path is constructed, you can check that each object (certificate or
CRL) is valid at the specified validity time; in other words, it has not expired. You
might also want to include certificate revocation checking to verify that none of the
certificates in the path have been revoked. Cert-C provides APIs to verify if a
certificate has been revoked using CRLs or the OCSP standard.

There are APIs to verify name constraints, basic CA constraints, policy and
policy-mapping, and that key usage is correct.

Cert-C also provides low-level APIs to verify a signature on an individual certificate
or CRL.
18 7

Trusted Root
Trusted Root
When you receive a certificate, it is already signed by a CA. To verify the certificate’s
authenticity, you verify the CA’s signature. To do that, you need the CA’s public key.
However you get the CA’s public key, you want it certified so that you can be sure the
key you use to verify the certificate is genuine.

The best way to verify a public key is with a certificate. So you will want a copy of the
CA’s certificate. However, you need to check who signed the CA’s certificate. If it is
another CA, then you check that CA’s certificate too. You can stop checking
certificates when you get to a trusted root.

The PKI system relies on a trusted authority to certify CAs. The trusted root issues
certificates to CAs. You need to obtain this trusted authority’s public key outside the
usual certificate hierarchy. This public key is the trusted-root key. You get a copy of
this key and verify that you indeed have the right copy by checking it against a
number of other independent sources. Maybe this trusted-root key is published in a
trade journal or you verify by telephone.
1 8 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Certificate Chaining
Certificate Chaining
Once you have the trusted-root key, you should save it in a protected format, possibly
password-based encrypted. You are not hiding the key, you are making sure no one
can replace your copy of that key with another.

Now when you want to verify a CA’s certificate, you do so by checking the signature
on the CA’s certificate using the trusted root’s public key.

This is known as certificate chaining. You start with a user’s certificate, and verify its
validity using the CA’s public key, which you extracted from the CA’s certificate, the
validity of which you verified using the trusted root’s public key.

In chaining, there may be a number of levels of CAs between the user and the CA.

Figure 11-1 shows an example of a certificate chain. Patrick can trust CA #1’s
certificate because it was signed by the trusted root. He can then trust CA #2’s
certificate because it was signed by CA #1. And finally, he can trust Maria’s certificate
because it was signed by CA #2.

Figure 11-1 A Certificate Chain

Trusted Root

CA #1

CA #2

Maria Terry

CA #3

Chris Leslie
C h a p t e r 1 1 Ve r i f y i n g C e r t i f i c a t e s a n d C R L s 18 9

Verify a Certificate or CRL Functions
Verify a Certificate or CRL Functions
Some examples of the functions that Cert-C provides to verify a certificate or CRL are
listed in the following tables.

High-Level Functions
These high-level functions are usually used to build a certificate path and check the
revocation status of a given certificate.

Low-Level Functions
These low-level functions are used to implement service-provider functionality for
the high-level functions.

High-Level Function Description

C_BuildCertPath Validates a certificate or CRL by determining whether or not a
valid path exists from the object to a certificate in the trusted
store. This function calls the C_CheckCertRevocation
function to check the revocation status of the certificates in the
path. You can set the CERT_PATH_CTX.pathOptions field to
include the PF_IGNORE_REVOCATION flag; this flag causes
path processing not to check the revocation status of each
certificate.

C_CheckCertRevocation Determines the revocation status of a given certificate.

Low-Level Function Description

C_GetNextCertInPath Returns a set of certificates (given a certificate or CRL), which
could have signed the given certificate or CRL. Usually, your
application does not use this API directly. Instead, the
application uses C_BuildCertPath.

C_ValidateCert Validates the information present in a certificate, given a
certificate and a public key. You can use this API to implement
path processing; however, it does not do any certificate
chaining. Usually, your application does not use this API
directly. Instead, the application uses C_BuildCertPath.
1 9 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Service Providers
You use the C_BuildCertPath and C_CheckCertRevocation APIs most commonly
when implementing certificate validation.

Use C_BuildCertPath to build a certificate path to validate either a certificate or a
CRL. You can request the appropriate level of checking during path construction.
Cert-C supports policy mapping through the PA_PKIX2 flag in the
CERT_PATH_CTX.pathAlgorithm field.

C_CheckCertRevocation determines the revocation status of the specified certificate.
It returns the certificate’s revocation status and related information. This function
uses either the CRL or the OCSP revocation-status protocol, depending on the
certificate revocation status service provider you register when you initialize the
Cert-C context.

You can look at the samples/validate/validate.c sample program for an example
of how these two APIs are used. There are also other relevant samples in the samples/
validate directory.

You almost never call the C_GetNextCertInPath and C_ValidateCert APIs directly in
your application. You should only need to call these APIs when you want to construct
a routine that performs what the C_BuildCertPath API is defined to do. For an
example of how these APIs are implemented, you can look at the BuildCertPath
routine in the provider/path/pkix/pkixpath.c provider source code, which is an
implementation of the CERT_PATH_FUNCS.BuildCertPath callback in the Cert-C
Certificate-Path Processing service provider source code. BuildCertPath uses the
C_GetNextCertInPath and C_ValidateCert API calls.

The only purpose of C_VerifyCertSignature and C_VerifyCRLSignature is to verify
an individual signature. You almost never call these APIs directly in your application.

Service Providers
You need to use a certificate-path processing, a database, and a certificate-revocation
status service provider to implement certificate or CRL validation. Cert-C provides
these service providers. For more information about the Cert-C service providers, see
the API Reference.

C_VerifyCertSignature Verifies the signature on a specific certificate, given a
certificate and a public key.

C_VerifyCRLSignature Verifies the signature on a specific CRL, given a CRL and a
public key.

Low-Level Function Description
C h a p t e r 1 1 Ve r i f y i n g C e r t i f i c a t e s a n d C R L s 19 1

Service Providers
• The Cert-C Certificate-Path Processing service provider code is called to construct
a certificate path. It retrieves certificates and CRLs from a local database or a
remote server using the HTTP or LDAP protocol.

• A database SERVICE is required in the CERT_PATH_CTX for the path-processing code
to obtain the needed certificates and CRLs.

• The Cert-C Certificate-Revocation Status service provider code is called to
determine a certificate’s revocation status.
1 9 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Validating a Certificate Path
Validating a Certificate Path
In this example, you build a certificate path to verify a certificate or a CRL. You
configure the certificate-path processing context to define how to build and check the
certificate path. You also check the revocation status of a certificate.

You register and initialize a database service provider and a certificate-path
processing service provider to build a certificate path to verify a certificate or a CRL.
You register and initialize a certificate-revocation status service provider to check the
revocation status of a particular certificate. In both cases, you create a certificate-path
processing context to define the certificate check policy.

Step 1: Register service providers with the Cert-C context
Initialize and register the required service providers with the Cert-C context. You can
do this by calling either C_InitializeCertC or C_RegisterService. In this example,
you use the C_InitializeCertC function to initialize the Cert-C In-Memory Database,
the Cert-C Certificate-Path Processing, and the Cert-C Certificate-Revocation Status
service providers. The SERVICE_HANDLER structure contains service-provider
information and the service-provider initialization function. To see how to initialize
and register a service provider, see “Registering a Service Provider After Cert-C
Initialization” on page 77.

For more information C_InitializeCertC and SERVICE_HANDLER, see the API
Reference.

#define SP_COUNT 4
#define CACHE_DB_NAME “Cache IM Database”

CERTC_CTX ctx = NULL;

SERVICE_HANDLER spTable[SP_COUNT] = {;
 {SPT_DATABASE, "Sample IM Database", S_InitializeMemoryDB},
 {SPT_DATABASE, CACHE_DB_NAME, S_InitializeMemoryDB},
 {SPT_CERT_PATH, "Cert Path Processing Provider", S_InitializePKIXPath},
 {SPT_CERT_STATUS, "Cert Revocation Status Provider", S_InitializeCRLStatus}
}

C h a p t e r 1 1 Ve r i f y i n g C e r t i f i c a t e s a n d C R L s 19 3

Validating a Certificate Path
For more information about the role of the database specified in the
CRL_STATUS_INIT_PARAMS.dbName field, see the “Cert-C CRL Revocation Status Service
Provider” section of the API Reference.

Step 2: Prepare CERT_PATH_CTX
Use the CERT_PATH_CTX structure to hold the information necessary for path
validation; for example, a set of trusted certificates.

You set the path-processing algorithm, pathAlgorithm, according to the standard you
want to follow. If you want path processing according to section 6 of RFC 2459, set
pathAlgorithm to PA_PKIX. Or, if you want path processing according to RFC 3280, set
pathAlgorithm to PA_PKIX2. If you set PA_PKIX2 and pathOptions.PA_IGNORE_POLICY,
then path processing is similar to setting PA_PKIX. In this example, set pathAlgorithm
to PA_PKIX.

Set the pathOptions parameter to 0 (zero). pathOptions is a UINT4 value that contains a
set of 1-bit flags that you can use to modify the basic certificate-path-processing
algorithm. The flags are used to turn off certain checks in certificate-path building or
validation. For more information about setting path options, see CERT_PATH_CTX in the

POINTER spParams[SP_COUNT] = {0};

CRL_STATUS_INIT_PARAMS crlStatParams = {0};

crlStatParams.dbName = CACHE_DB_NAME;

/* This is the parameter for S_InitializeCRLStatus */
spParams[3] = (POINTER)&crlStatParams;

status = C_InitializeCertC (spTable, spParams, SP_COUNT, &ctx);
if (status !=0)
 goto CLEANUP;

typedef struct {
 int pathAlgorithm; /* Path-processing algorithm */
 UINT4 pathOptions; /* Modify base path algorithm */
 LIST_OBJ trustedCerts; /* "root" certificates */
 LIST_OBJ policies; /* Acceptable policies */
 UINT4 validationTime; /* Path must be valid at this time */
 SERVICE database; /* Database(s) for path processing */
} CERT_PATH_CTX;
1 9 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Validating a Certificate Path
API Reference. If you set pathAlgorithm.PA_PKIX2 and pathOptions.PA_IGNORE_POLICY,
then path processing is similar to setting PA_PKIX.

For this example, assume that you have a LIST_OBJ called trustedRoots that contains a
collection of one or more CERT_OBJs whose public keys are trusted by the application.
These CERT_OBJs represent the trusted certificate store. Valid certification paths end in
one of these certificates. See “Creating and Enumerating a List of Objects” on page 94
for an example of how to create a LIST_OBJ.

policies is a LIST_OBJ that contains a set of initial policy identifiers. These identify
one or more certificate policies that are acceptable for processing certification paths.
Each entry in the list is of type ITEM, where the item value is the OID. If you accept
any policy, then set policies to (LIST_OBJ)ANY_POLICY. ANY_POLICY is a constant that
is defined in certpath.h file.

When you select ANY_POLICY then C_BuildCertPath’s policyInfoList field returns
every unique policy ID (including the anyPolicy OID from the root node when
pathAlgorithm is PA_PKIX2) found in the tree. When you specify that only certain
specific policies are acceptable, by including those policies in CERT_PATH_CTX.policies,
then policyInfoList contains only those policies (and all qualifiers) which are
common to both the input list of policies and the developed policy tree. The path is
valid for these policies, however, it is possible that policyInfoList might not contain
the original number of acceptable policies in CERT_PATH_CTX.policies.

Set the validationTime parameter to 0 (zero) or to PF_VALIDATION_TIME_NOW to
indicate that the validation time should be the time at which the certification-path
operation is performed.

For this example, assume that you have a SERVICE called db that is bound to a
database instance. You will obtain certificates and CRLs from this database to
construct a certificate path. For an example of how to create a SERVICE handle, see
“Using the SERVICE Handle” on page 79.

For more information about CERT_PATH_CTX, see the API Reference.

CERT_PATH_CTX pathCtx;

pathCtx.pathAlgorithm = PA_PKIX;
pathCtx.pathOptions = 0;
pathCtx.trustedCerts = trustedRoots;
pathCtx.policies = ANY_POLICY;
pathCtx.validationTime = 0;
pathCtx.database = db;
C h a p t e r 1 1 Ve r i f y i n g C e r t i f i c a t e s a n d C R L s 19 5

Validating a Certificate Path
Step 3: Verify a certificate path exists and check certificate
revocation status
To build a certificate path to verify a certificate or CRL, perform step 3a. In this step,
you will also check each certificate’s revocation status as you previously set
pathOptions to 0 (zero). To just check the revocation status of a particular certificate,
perform step 3b.

Step 3a: Verify a certificate path exists
Use C_BuildCertPath to validate a certificate or a CRL. The object to validate can be
either a CERT_OBJ or a CRL_OBJ. The C_BuildCertPath function constructs a path from
objToValidate to one of the trusted certificates in the certificate path-processing
context (CERT_PATH_CTX.trustedCerts field).

Pass a Cert-C context and a pointer to the path-processing context.

For this example, assume that you have an already created CERT_OBJ or CRL_OBJ, and
that the object has been initialized with data. objToValidate points to this object. To
see how to create and set a CERT_OBJ, see “Creating a Certificate Object” on page 169.
To see how to create and set a CRL_OBJ, see “Creating a CRL Object” on page 231.

To validate a certification path you pass NULL_PTR values for the certPath, crlList,
crlCerts and policyInfoList parameters.

You already set the path algorithm to PA_PKIX. This implements path processing
according to section 6 of RFC 2459. In this example, if path processing is not successful
using PA_PKIX, then the PA_X509_V1 algorithm is used to try to build a certificate path.
PA_X509_V1 is a simple path-processing algorithm that only uses the v1 fields of a
certificate. It performs basic issuer name/subject name matching and signature

int C_BuildCertPath (
 CERTC_CTX ctx, /* Cert-C context handle */
 CERT_PATH_CTX *pathCtx, /* path-processing context */
 POINTER startObject, /* starting point for the path */
 LIST_OBJ certPath, /* (in/out) resulting cert path */
 LIST_OBJ crlList, /* (in/out) CRLs to verify the path */
 LIST_OBJ crlCerts, /* (in/out) certs to verify CRLs */
 LIST_OBJ policyInfoList /* (in/out) cert policy list */
);
1 9 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Validating a Certificate Path
verification.

Step 3b: Check revocation status
Use C_CheckCertRevocation to check the revocation status of a particular certificate.
This function uses either the CRL or the OCSP revocation-status protocol, depending
on the certificate-revocation status service provider you register when you initialize
the Cert-C context. In this example, you chose to use the Cert-C Certificate Revocation
Status service provider in step 1.

C_CheckCertRevocation returns the certificate’s revocation status and related

status = C_BuildCertPath (ctx, &pathCtx, (POINTER)objToValidate,
 (LIST_OBJ)NULL_PTR, (LIST_OBJ)NULL_PTR,
 (LIST_OBJ)NULL_PTR, (LIST_OBJ)NULL_PTR);

if (status != 0) {
 RSA_PrintMessage ("C_BuildCertPath returned 0x%04x ", status);
 RSA_PrintMessage ("when using PA_PKIX.\nTrying PA_X509_V1...\n");

 pathCtx.pathAlgorithm = PA_X509_V1;

 status = C_BuildCertPath (ctx, &pathCtx, (POINTER)objToValidate,
 (LIST_OBJ)NULL_PTR, (LIST_OBJ)NULL_PTR,
 (LIST_OBJ)NULL_PTR, (LIST_OBJ)NULL_PTR);

 if (status != 0)
 goto CLEANUP;
}

int C_CheckCertRevocation (
 CERTC_CTX ctx, /* Cert-C context */
 CERT_PATH_CTX *pathCtx, /* Path-processing context */
 CERT_OBJ cert, /* Certificate to be checked */
 CERT_REVOCATION *revocation /* (in/out) Revocation status of cert */
);
C h a p t e r 1 1 Ve r i f y i n g C e r t i f i c a t e s a n d C R L s 19 7

Validating a Certificate Path
information in a CERT_REVOCATION data structure.

Again, assume that you have an already created CERT_OBJ object called objToValidate,
and that you have initialized the object with data. To see how to create and set a
CERT_OBJ, see “Creating a Certificate Object” on page 169.

Pass a Cert-C context and a pointer to the path-processing context.

Pass a pointer to an allocated and initialized to zero CERT_REVOCATION structure. The
caller is responsible for validating the revocation evidence that is returned (for
example, validating the CRL signature and certification path).

typedef struct {
 int status; /* Certificate status */
 int evidenceType; /* Type of evidence */
 POINTER evidence; /* Evidence of status */
} CERT_REVOCATION;

CERT_REVOCATION revocationInfo = {0};

status = C_CheckCertRevocation (ctx, &pathCtx, objToValidate,
 &revocationInfo);

if (status != 0)
 goto CLEANUP;

if (revocationInfo.status == CERT_REVOKED) {
 RSA_PrintMessage ("Cert has been revoked!\n");
 status = E_NOT_VALIDATED;
 goto CLEANUP;

} else if (revocationInfo.status == CERT_NOT_REVOKED) {
 RSA_PrintMessage ("Cert has not been revoked!\n");

} else if (revocationInfo.status == CERT_REVOCATION_UNKNOWN) {
 RSA_PrintMessage ("Insufficient information to determine ");
 RSA_PrintMessage ("revocation status.\n");
 /* At this point, the application should decide if this is a fatal error
 or not. Here, we do not treat it as a fatal condition. */
1 9 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Validating a Certificate Path
Step 4: Clean up
The CERT_REVOCATION structure is populated by the C_CheckCertRevocation call. You
are responsible for freeing the revocation evidence; call either C_DestroyCRLEvidence
or C_DestroyOCSPEvidence. For more information about how to clean up the data
stored in CERT_REVOCATION, see the API Reference.

} else {
 RSA_PrintMessage ("Invalid CERT_REVOCATION.status value!\n");
 status = E_INVALID_PARAMETER;
 goto CLEANUP;
}

if (revocationInfo.evidenceType == CRE_CRL)
 C_DestroyCRLEvidence ((CRL_EVIDENCE **)&revocationInfo.evidence);
else if (revocationInfo.evidenceType == CRE_OCSP)
 C_DestroyOCSPEvidence ((OCSP_EVIDENCE **)&revocationInfo.evidence);

C_FinalizeCertC (&ctx);
C h a p t e r 1 1 Ve r i f y i n g C e r t i f i c a t e s a n d C R L s 19 9

Verifying a Signature
Verifying a Signature
You must prove the entity that generated and sent a certificate or CRL to you actually
has access to the private key that corresponds to the public key contained in the
certificate request. The certificate request was signed by the requestor using the
subject’s private key, so you can verify the signature using the public key contained in
the certificate object or the CRL object.

Verifying a Signature on a Certificate
In this example, a certificate was signed by the issuer using the issuer’s private key.
You need to obtain the certificate issuer’s public key; then you can verify the signature
on the certificate.

Using the C_VerifyCertSignature function, you verify the signature. For more
information about C_VerifyCertSignature, see the API Reference.

Verifying a Signature on a CRL
In this example, a CRL was signed by the issuer using the issuer’s private key. You
need to obtain the CRL issuer’s public key; then you can verify the signature on the
CRL.

Using the C_VerifyCRLSignature function, you verify the signature. For more
information about C_VerifyCRLSignature, see the API Reference.

status = C_VerifyCertSignature (certObj, certPublicKeyObj);
if (status != 0)
 goto CLEANUP;

status = C_VerifyCRLSignature (crlObject, caPublicKeyObject);
if (status != 0)
 goto CLEANUP;
2 0 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 12

Storing and Retrieving Certificates,
CRLs, and Private Keys
Storing private keys in a secure mechanism is an intrinsic part of any PKI-enabled
system. A certificate can be a public structure; however, the certificate owner alone
must possess the private key. Possession of the private key proves that you are the
owner of the certificate. Therefore, private keys must be stored securely. It is
important that you choose an appropriate storage and protection method for your
application. You also need to choose an appropriate user validation method to access
the private key.

When you request a certificate from a CA, you need to store the certificate in a
certificate database. Later you can retrieve the certificate when you want to perform
an operation that requires a certificate; for example, to self-sign the certificate.

You might need to retrieve certificates to validate a certificate path. When you
originally received the certificate to be verified, you might also have received all or
some of the certificates that you need to verify it. At the time of receipt, you store
these certificate in a certificate database.

Cert-C provides APIs and database service providers that you can use to store and
retrieve certificates, CRLs, and private keys. The details of the storage mechanisms
provided in Cert-C are service-provider-specific.
20 1

Cert-C Database APIs
Cert-C Database APIs
Most of the Cert-C database API calls require the use of a SERVICE handle. The
SERVICE handle provides a convenient method to specify a subset of the service
providers, registered with a Cert-C context, which are operated on by a particular API
call. This saves you from constantly registering and unregistering service-provider
instances.

Some of the functions that Cert-C provides to store and retrieve certificates, CRLs,
and private keys are listed in the following tables:

Database Service and Iterator Functions

Function Description

C_BindService Binds a single currently registered service provider (with a given
CERTC_CTX) to a SERVICE handle. A SERVICE handle can be used as
a parameter to Cert-C functions that use a specific service provider or a
set of service providers.

C_BindServices Binds one or more currently registered service providers, of a single
type and with a given CERTC_CTX, to a SERVICE handle. A service
handle is required for some Cert-C API functions that can be directed to
a particular service provider or to a set of service providers.

C_UnbindService Unbinds a previous binding of service providers to the specified handle.
It also performs the necessary clean-up for a SERVICE handle created
with C_BindService or C_BindServices.

C_FreeIterator Frees a database iterator previously created by one of the
C_SelectFirst* functions. C_FreeIterator can be called to free
an iterator before retrieving all of the records of a particular type.
2 0 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Cert-C Database APIs
Store Certificate Functions

Store CRL Functions

Store Private Key Functions

Function Description

C_InsertCert Inserts a certificate into the database or databases that are bound to
the SERVICE handle.

C_InsertCertList Inserts a list of certificates into the database or databases that are
bound to the SERVICE handle.

Function Description

C_InsertCRL Inserts a CRL into the database or databases that are bound to the
SERVICE handle.

C_InsertCRLList Inserts a list of CRLs into the database or databases that are bound to
the SERVICE handle.

Function Description

C_InsertPrivateKey Inserts a private key into the database or databases bound
to the SERVICE handle.

This API does not insert the certificate into the database
bound to the SERVICE handle. And, it does not check to
ensure that the private key and the certificate correspond
to each other. You can do this checking or it can be done by
service-provider implementation.

C_InsertPrivateKeyBySPKI Inserts a private key into the database or databases bound
to the SERVICE handle. The private key is identified by the
corresponding subject-public-key identifier.

This API does not check to ensure that the private key and
the public key correspond to each other. You can do this
checking or it can be done by service-provider
implementation.
C h a p t e r 1 2 S t o r i n g a n d R e t r i e v i n g C e r t i f i c a t e s , C R L s , a n d P r i v a t e K e ys 20 3

Cert-C Database APIs
Retrieve Certificate Functions

Function Description

C_SelectCertByAttributes Retrieves one or more certificates, identified by the
specified attributes (based on the name-value pairs in
the ATTRIBUTES_OBJ) and base subject name, from
the database or databases bound to the SERVICE
handle. C_SelectCertByAttributes then adds a
copy of the certificate to the certificate list.

C_SelectCertByExtensions Retrieves one or more certificates, identified by the
specified extensions and base subject name, from the
database or databases bound to the SERVICE handle.
Use C_CompareExtensions to compare extensions.
C_SelectCertByExtensions then adds a copy of
the certificate to the certificate list.

C_SelectCertByIssuerSerial Retrieves the certificate, identified by the specified
issuer name and serial number, from the database or
databases bound to the SERVICE handle.
C_SelectCertByIssuerSerial then adds a copy
of the certificate to the certificate list.

C_SelectCertBySubject Retrieves one or more certificates, identified by the
specified subject name, from the database or databases
bound to the SERVICE handle.
C_SelectCertBySubject then adds a copy of the
certificate to the certificate list.

C_SelectFirstCert Retrieves the first certificate from the database or
databases bound to the SERVICE handle, and adds a
copy of the certificate to the certificate list.

Use this API to begin an enumeration of the certificates
in a particular database SERVICE handle. This routine
initializes a DB_ITERATOR, which can be used with
subsequent calls to C_SelectNextCert.

C_SelectNextCert Retrieves the next certificate from the database or
databases bound to the iterator, and adds a copy of the
certificate to the certificate list.

Use this API to continue the enumeration that began
with the call to C_SelectFirstCert.
2 0 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Cert-C Database APIs
Retrieve CRL Functions

Retrieve Private Key Functions

Function Description

C_SelectCRLByIssuerTime Retrieves a CRL, identified by the specified issuer name and
time (whose last update time is the closest to the given time
without exceeding the given time), from the database or
databases bound to the SERVICE handle.
C_SelectCRLByIssuerTime then adds a copy of the
matching CRL to the CRL list.

C_SelectFirstCRL Retrieves the first CRL from the database or databases
bound to the SERVICE handle, and adds a copy of the CRL to
the CRL list.

Use this API to begin an enumeration of the CRLs in a
particular database SERVICE handle. This routine initializes
a DB_ITERATOR, which can be used with subsequent calls
to C_SelectNextCRL.

C_SelectNextCRL Retrieves the next CRL from the database or databases
bound to the iterator, and adds a copy of the CRL to the CRL
list.

Use this API to continue the enumeration which began with
the call to C_SelectFirstCRL.

Function Description

C_SelectFirstPrivateKey Retrieves the first private key from the database or
databases bound to the SERVICE handle, and adds a copy
to the B_KEY_OBJ object.

Use this API to begin an enumeration of the private keys in a
particular database SERVICE handle. This routine
initializes a DB_ITERATOR, which can be used with
subsequent calls to C_SelectNextPrivateKey.

C_SelectNextPrivateKey Retrieves the next private key from the database or
databases bound to the iterator, and adds a copy to the
B_KEY_OBJ object.

Use this API to continue the enumeration, which began with
the call to C_SelectFirstPrivateKey.
C h a p t e r 1 2 S t o r i n g a n d R e t r i e v i n g C e r t i f i c a t e s , C R L s , a n d P r i v a t e K e ys 20 5

Cert-C Database APIs
C_SelectPrivateKeyByCert Retrieves the private key, identified by the specified
certificate, from the database or databases bound to the
SERVICE handle.

C_SelectPrivateKeyBySPKI Retrieves the private key, identified by the specified
subject’s public-key identifier, from the database or
databases bound to the SERVICE handle.

Function Description
2 0 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Cert-C Database Service Providers
Cert-C Database Service Providers
Cert-C provides various database service providers to help you store and retrieve
certificates, CRLs, and private keys. You use the Cert-C APIs to access the various
database service providers’ functions.

There are six Cert-C database service providers; the Cert-C Default Database service
provider, the Cert-C In-Memory Database service provider, the Cert-C LDAP
Database service provider, the Cert-C CryptoAPI Database service provider, the
Cert-C SCEP Database service provider, and the Cert-C PKCS #11 Database service
provider.

The database service providers are initialized by implementing the callbacks in the
DB_FUNCS structure. For more information about DB_FUNCS, see the API Reference. The
source code for the Cert-C database service providers is included in the Cert-C
standard toolkit distribution. The “Service Provider” section of the API Reference
details the implementations of the callbacks for each service provider.

Cert-C Default Database service provider
You can use this database service provider to store and retrieve certificates, CRLs, and
private keys. It provides a persistent local database. Database entries are stored as
records in files in the local file system. This database service provider is suitable for
managing a small-to-medium number of entries; for example, up to tens of thousands
of entries. Private keys are protected using standard PKCS #5 v2.0 password-based
encryption. You provide the password through the DEFAULT_DB_PARAMS initialization
parameters. You must also register a cryptographic service provider with this
database service provider when you want to store or retrieve private keys.

Cert-C In-Memory Database service provider
You can use this database service provider to store and retrieve certificates, CRLs, and
private keys. It stores entries in list objects that are in-memory. This database service
provider is useful in caching or in processing lists of certificates, private keys, or
PKCS #10 objects. This service provider does not encrypt private keys.

Cert-C LDAP Database service provider
You can use this database service provider to retrieve certificates and CRLs from an
LDAP repository. You can make an LDAP repository available as a database service
provider. The LDAP is a read-only source; it does not implement any write functions.
C h a p t e r 1 2 S t o r i n g a n d R e t r i e v i n g C e r t i f i c a t e s , C R L s , a n d P r i v a t e K e ys 20 7

Cert-C Database Service Providers
Cert-C CryptoAPI Database service provider
You can use this database service provider to store and retrieve certificates and key
pairs. It translates Cert-C database function calls into CryptoAPI function calls. This
enables you to share keys and certificates among applications written to the Cert-C
API and applications written to CryptoAPI.

Cert-C SCEP Database service provider
You can use this database service provider to retrieve CA and RA certificates, and
possibly certificate chains leading to them, from network devices such as routers. It is
suitable for network devices that may need to retrieve trusted-root certificates for use
with an SCEP PKI service provider when an LDAP server is not available. Once
retrieved, these certificates are usually retained in some type of local storage until the
device is either re-initialized or redeployed.

Cert-C PKCS #11 Database service provider
You can use this database service provider to store and retrieve certificates and
private keys on a token. You must also register a PKCS #11-enabled cryptographic
service provider with this database service provider.

For detailed information about the Cert-C database service providers, see the API
Reference.
2 0 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Storing and Retrieving Certificates, CRLs, and Private Keys
Storing and Retrieving Certificates, CRLs,
and Private Keys
When storing or retrieving items in a database, you must first select the desired
database service provider. For more information, see the “Service Provider” section of
the API Reference. You should review the service-provider-specific initialization
routine S_Initialize*, and note the second parameter’s format. In most cases, this
parameter is called params. It points to a structure that contains the specified database
service provider’s initialization parameters. Each database service provider has a
distinct structure to pass initialization parameters to the service provider’s
initialization functions. You are responsible for creating any elements that these
structures require.

The following is a list of samples that demonstrate the use of the database APIs:

• samples/db/rsadbcert.c and samples/db/rsadbm.c demonstrate the Cert-C
Default Database service provider.

• samples/db/imdbcert.c demonstrates the Cert-C In-Memory Database service
provider.

• samples/db/ldap.c demonstrates the Cert-C LDAP Database service provider.
• samples/db/mscapicert.c and samples/db/mscapiroots.c demonstrate the

Cert-C CryptoAPI Database service provider (Win32 only).
• samples/db/scepdb.c demonstrates the Cert-C SCEP Database service provider.
• samples/db/pkcs11db.c demonstrates the Cert-C PKCS #11 Database service

provider. (See the release notes for supported platforms.)

The following two examples outline the steps that a program has to go through to
make use of the database API calls that store and retrieve certificates, CRLs, and
private keys. The first example stores a certificate in a database. The second example
follows on from the first example and retrieves a list of certificates from a database.
C h a p t e r 1 2 S t o r i n g a n d R e t r i e v i n g C e r t i f i c a t e s , C R L s , a n d P r i v a t e K e ys 20 9

Storing a Certificate, CRL, or Private Key
Storing a Certificate, CRL, or Private Key
In this example, you initialize the Cert-C In-Memory Database service provider. Its
initialization routine is S_InitializeMemoryDB. The second parameter, params, takes
either a NULL_PTR, which allows the service provider to manage the internal
LIST_OBJs, or a pointer to a MEMORY_DB_PARAMS structure that contains the LIST_OBJs.
Assume that you previously created the LIST_OBJs for use with this service provider.
In this example, you set params to a NULL_PTR to allow the service provider to manage
the internal LIST_OBJs.

Step 1: Register service providers with CERTC_CTX
Initialize Cert-C and register the Cert-C In-Memory Database service provider with
the CERTC_CTX. For more information about registering a service provider, see
“Initializing the Cert-C Context” on page 75.

Step 2: Bind a SERVICE handle
Create a SERVICE handle to associate a subset of the registered database service
provider instances. For more information about binding a SERVICE handle, see

#define DB_NAME "Sample IM Database"

 CERTC_CTX ctx = NULL;
 SERVICE_HANDLER spTable[1];
 POINTER spParams[1];

 spTable[0].type = SPT_DATABASE;
 spTable[0].name = DB_NAME;
 spTable[0].Initialize = S_InitializeMemoryDB;

 spParams[0] = NULL_PTR;

 status = C_InitializeCertC (spTable, spParams, SP_COUNT, &ctx);
 if (status != 0)
 goto CLEANUP;
2 1 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Storing a Certificate, CRL, or Private Key
“Binding a Service” on page 80

You can use the SERVICE handle now with any of the database APIs.

Step 3: Insert a certificate
Assume you have a CERT_OBJ that you want to insert into a database. To insert a
certificate into a database, you call C_InsertCert and pass the CERT_OBJ to the
routine.

At this point, assuming you have a CRL_OBJ, you could insert a CRL by using
C_InsertCRL. Or, assuming you have a B_KEY_OBJ, you could insert a private key by
using C_InsertPrivateKey. However, not all database service providers will allow
you to do so. For more information about what each database service provider can
store, see “Cert-C Database Service Providers” on page 207, or see the “Service
Provider” section of the API Reference.

Step 4: Clean up
If you no longer need the list objects, making sure you have saved any information
you need later, then you can destroy them now. This frees up any memory allocated
by Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

Next, you call C_UnbindService to unbind the service provider, and C_FinalizeCertC
to free allocated memory and zeroize sensitive data.

 SERVICE db = (SERVICE)NULL_PTR;

 status = C_BindService (ctx, SPT_DATABASE, dbName, &db);
 if (status != 0)
 goto CLEANUP;

 status = C_InsertCert (db, certObj);
 if (status != 0)
 goto CLEANUP;

C_DestroyListObject (&certList);
C_UnbindService (&db);
C_FinalizeCertC (&ctx);
C h a p t e r 1 2 S t o r i n g a n d R e t r i e v i n g C e r t i f i c a t e s , C R L s , a n d P r i v a t e K e ys 21 1

Retrieving a Certificate, CRL, or Private Key
Retrieving a Certificate, CRL, or Private Key
In this example, you continue from the example “Storing a Certificate, CRL, or Private
Key” on page 210. You have already initialized the Cert-C In-Memory Database
service provider and created a SERVICE handle. Here you will enumerate the
certificates in the databases associated with the SERVICE handle by creating a
DB_ITERATOR. Cert-C copies any certificates that are found into a LIST_OBJ.

Step 1: Register service providers with CERTC_CTX
Initialize Cert-C and register the Cert-C In-Memory Database service provider with
the CERTC_CTX. You already did this in the example “Storing a Certificate, CRL, or
Private Key” on page 210. For more information about registering a service provider,
see “Initializing the Cert-C Context” on page 75.

Step 2: Bind a SERVICE handle
Create a SERVICE handle to associate a subset of the registered database service
provider instances. You already did this in the example “Storing a Certificate, CRL, or
Private Key” on page 210. For more information about binding a SERVICE handle, see
“Binding a Service” on page 80.

Step 3: Enumerate the contents of a SERVICE handle
First, you need to create a LIST_OBJ to store the enumerated certificates.

Next, you need to initialize a database iterator to go through a list of certificates in a
database. You call the C_SelectFirstCert to create the database iterator.
C_SelectFirstCert retrieves the first certificate it finds and stores it in the LIST_OBJ.

At this point, you could retrieve a CRL by using C_SelectFirstCRL. Assuming you
have a B_KEY_OBJ, you could also retrieve a private key by using
C_SelectFirstPrivateKey. However, not all database service providers allow you to
do so. For more information about what each database service provider can retrieve,
see “Cert-C Database Service Providers” on page 207, or see the “Service Provider”

 LIST_OBJ certList = (LIST_OBJ)NULL_PTR;

 status = C_CreateListObject (&certList);
 if (status != 0)
 goto CLEANUP;
2 1 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Retrieving a Certificate, CRL, or Private Key
section of the API Reference.

You can now make subsequent calls using the C_SelectNextCert routine.
C_SelectNextCert retrieves the next certificate it finds and stores it in the LIST_OBJ.
You know that there are no certificates remaining in the database when Cert-C frees
any memory associated with the iterator and the iterator is set to NULL_PTR. You can
dispose of the database iterator before all of the certificates have been retrieved. To
dispose of the database iterator, you call C_FreeIterator.

As with this point, you could retrieve a CRL by using C_SelectNextCRL. Assuming
you have a B_KEY_OBJ, you could also retrieve a private key by using
C_SelectNextPrivateKey. However, not all database service providers allows you to
do so. For more information about what each database service provider retrieves, see
“Cert-C Database Service Providers” on page 207, or see the “Service Provider”
section of the API Reference.

Step 4: Clean up
If you no longer need the list objects, making sure you have saved any information
you need later, then you can destroy them now. This frees up any memory allocated
by Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

 DB_ITERATOR iterator = (DB_ITERATOR)NULL_PTR;

 status = C_SelectFirstCert (db, &iterator, certList);
 if (iterator == NULL) {
 RSA_PrintMessage ("Database empty.\n");
 status = 0;
 }

 else if (status != 0)
 goto CLEANUP;
 else
 for (;;) {
 status = C_SelectNextCert (&iterator, certList);
 if (iterator == NULL) {
 status = 0;
 break;
 }
 else if (status != 0)
 goto CLEANUP;
 }
C h a p t e r 1 2 S t o r i n g a n d R e t r i e v i n g C e r t i f i c a t e s , C R L s , a n d P r i v a t e K e ys 21 3

Retrieving a Certificate, CRL, or Private Key
You should also free the database iterator; to do this, you call C_FreeIterator. If a
C_SelectFirst* or C_SelectNext* function has returned a non-zero status, it is not
necessary to call C_FreeIterator. Upon return, the iterator is set to NULL_PTR.

Next, you call C_UnbindService to unbind the service provider, and C_FinalizeCertC
to free allocated memory and zeroize sensitive data.

C_DestroyListObject (&certList);
C_FreeIterator (&iterator);
C_UnbindService (&db);
C_FinalizeCertC (&ctx);
2 1 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 13

Retrieving Certificate Information
Throughout Cert-C, you retrieve information. Maybe the information is the
BER-encoding of a certificate request or a CRL. It might be string information that you
retrieve, concerning a name or serial number. Almost always, this information
belongs to Cert-C. That is, Cert-C returns to you a pointer. If you follow that pointer,
it leads you to the information inside a Cert-C object. Cert-C allocates space and
places the appropriate information there. Cert-C tells you where that space is.

This happens when an argument to Cert-C is a pointer to a pointer, such as unsigned
char **. You declare a variable to be a pointer and pass the address of that pointer.
Cert-C goes to the address you pass and deposit a pointer. Now if you go to where
that pointer points, you can find the information you are looking for. This
information, though, belongs to a Cert-C object. Subsequent Cert-C calls that alter or
destroy the object render that pointer undefined. You do not need to allocate or free
this information; Cert-C does that during the C_Destroy* operation. Look at the
information all you want, but if you need to save it, copy it into a buffer you created
or allocated, or to a file.

There are a couple of exceptions to this rule. First, when Cert-C returns an integer
value (for example, int or unsigned int), declare a variable to be the proper integer
type and pass its address. Cert-C deposits an integer at that address. That integer
belongs to you. Subsequent calls to Cert-C do not alter it, although it may become
obsolete.

In this chapter, you work with several examples that retrieve information from a
21 5

Retrieving Name-Object Information
NAME_OBJ, a ATTRIBUTES_OBJ, and an EXTENSIONS_OBJ. For an example of how to
manipulate CERT_OBJ information, see “Manipulating Certificate Information” on
page 182.

Retrieving Name-Object Information
Cert-C uses a NAME_OBJ object to represent the names of entities. Cert-C provides APIs
for you to look at the information in a name object, in a form you can understand. In
this example, you display the information from a name object in a readable form.

Step 1: Create a name object
You have already created a name object in “Creating a Name Object” on page 105.

Step 2: Set the name object with the name information in BER
format
You have already performed this step in “Creating a Name Object” on page 105.

Step 3: Read the name information
You now have a CERT_FIELDS structure that contains all the information in the
certificate. You can see this information using various C_Get* functions.

You know the name object is made up of a series of AVAs. You must first find out
how many AVAs there are in the name object. Using the C_GetNameAVACount function,
you get the AVA count. For more information about C_GetNameAVACount, see the API
Reference.

Using the C_GetNameAVACount function, you obtain the number of AVAs in
nameObject's AVA list, storing the result in count.

int C_GetNameAVACount (
 NAME_OBJ nameObject, /* Name object */
 unsigned int *count /* (out) Number of AVAs */
);

unsigned int avaCount;
2 1 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Retrieving Name-Object Information
Now that you know how many AVAs there are in the name object, you can use the
C_GetNameAVA function to get each AVA. For more information about C_GetNameAVA,
see the API Reference.

The type is going to be an object identifier (OID). Since an OID is simply a sequence of
bytes, not a word or phrase, it will not be easy to read. You can check the returned
type against the list of attribute types in the API Reference. Compare type to
AT_COMMON_NAME for instance, to see if type is a common name. If they are equal, then
value contains the actual name.

This routine returns pointers to the value. If you go to where those pointers point, you
will find the information. Remember, the information is inside the name object; it
belongs to Cert-C.

if ((status = C_GetNameAVACount
 (newCertInfo.subjectName, &avaCount)) != 0)
 break;

int C_GetNameAVA (
 NAME_OBJ nameObject, /* Name object */
 unsigned int index, /* Index in the AVA list */
 unsigned char **type, /* (out) Attribute type */
 unsigned int *typeLen, /* (out) Length of attribute type */
 int *valueTag, /* (out) Tag for attribute value */
 unsigned char **value, /* (out) Attribute value */
 unsigned int *valueLen, /* (out) Length of attribute value */
 int *newLevel /* (out) Flag if this AVA starts new level */
);

int valueTag, newLevel;
unsigned int index, typeLen, valueLen;
unsigned char *type, *value;

for (index = 0; index < avaCount; ++index) {
 if ((status = C_GetNameAVA
 (newRequestorInfo.subjectName, index, &type,
 &typeLen, &valueTag, &value, &valueLen,
 &newLevel)) != 0)
 break;
C h a p t e r 1 3 R e t r i e v i n g C e r t i f i c a t e I n f o r m a t i o n 21 7

Retrieving Name-Object Information
The DisplayAVA routine is not a Cert-C routine. It is a placeholder for a routine that
reads the information so that you can verify its accuracy. In this way, you can make
sure it conforms to your CA’s guidelines. You write this routine to best fit your
application.

Step 4: Perform operations
In this example, you do not perform any sign or verify operations. There is no
signature to verify on a name object. You should have already verified the signature
on the entire certificate request.

Step 5: Destroy the name object
At this stage, you might want to keep and reuse the name object. For example, you
need to use a name object in some of the examples presented in the following
chapters. However, if you no longer need the name object, making sure you have
saved any information you need later, then you destroy it now. This frees up any
memory allocated by Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

 if ((status = DisplayAVA
 (index, type, typeLen, valueTag, value, valueLen,
 newLevel)) != 0)
 break;
}

CLEANUP:
 C_DestroyNameObject (&requestorName);
2 1 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Retrieving Attributes-Object Information
Retrieving Attributes-Object Information
Generally, an attributes object can contain any information; for example, the
SigningTime attribute, which contains the time when the PKCS #1 message was
signed. In this example, Cert-C uses an ATTRIBUTES_OBJ object to represent and pass
extra information about the certificate subject in a certification request. Cert-C
provides APIs for you to look at the information in an attributes object, in a form you
can understand. In this example, you display the information from an attributes object
in a readable form.

Step 1: Create an attributes object
You have already created an attributes object in “Creating an Attributes Object” on
page 115.

Step 2: Set the attributes object with the attributes information in
BER format
You have already performed this step in “Creating an Attributes Object” on page 115.

Step 3: Read the attributes information
You now have an attributes object that contains all the extra attributes. You can see
this information using various C_Get* functions.

Since the attributes in an attributes object are of your own design, Cert-C does not
know much about them. Each attribute is of a particular type, but may possess more
than one value.

First, you must find out how many attributes there are in the attributes object.
Because the attributes object can contain only one attribute of each type, getting the
number of attribute types in an attribute is equivalent to finding the number of
attributes in the attributes object. Using the C_GetAttributeTypeCount function, you
get the number of attributes in the attributes object. For more information about
C_GetAttributeTypeCount, see the API Reference.

int C_GetAttributeTypeCount (
 ATTRIBUTES_OBJ attributesObj, /* Attributes object */
 unsigned int *count /* (out) Number of distinct attributes */
);
C h a p t e r 1 3 R e t r i e v i n g C e r t i f i c a t e I n f o r m a t i o n 21 9

Retrieving Attributes-Object Information
Using the C_GetAttributeTypeCount function, you obtain the number of attributes in
attributesObj’s attributes list, and store the result in attribTypeCount.

Now that you know how many attribute types there are in the attributes object, you
can use the C_GetAttributeType function to get each attribute type. For more
information about C_GetAttributeType, see the API Reference.

You now know the different attribute types contained in the attributes object. Next,
you need to find out how many values are associated with each type. You can use the
C_GetAttributeValueCount function to do this.

Finally, using the C_GetStringAttribute function, you can get each value for each

unsigned int attribTypeCount;

if ((status = C_GetAttributeTypeCount
 (extraAttributes, &attribTypeCount)) != 0)
 break;

int C_GetAttributeType (
 ATTRIBUTES_OBJ attributesObj, /* Attributes object */
 unsigned int index, /* Index in the attribute list */
 unsigned char **type, /* (out) Attribute type */
 unsigned int *typeLen /* (out) Length of attribute type */
);

int C_GetAttributeValueCount (
 ATTRIBUTES_OBJ attributesObj, /* Attributes object */
 unsigned char *type, /* Attribute type */
 unsigned int typeLen, /* Length of attribute type */
 unsigned int *count /* (out) Number of values */
);
2 2 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Retrieving Attributes-Object Information
attribute type.

In this example, you perform the C_GetAttributeType, C_GetAttributeValueCount,
and C_GetStringAttribute routines in a nested for loop.

int C_GetStringAttribute (
 ATTRIBUTES_OBJ attributesObj, /* attributes object */
 unsigned char *type, /* attribute type */
 unsigned int typeLen, /* length of attribute type */
 unsigned int valueIndex, /* index in the list of values */
 int *valueTag, /* (out) tag for the string value */
 unsigned char **value, /* (out) string value */
 unsigned int *valueLen /* (out) length of string value */
);

unsigned int typeIndex, attribType;
unsigned int valueIndex, valueCount, valueTag, valueLen;
unsigned char *attribType, *value;

for (typeIndex = 0;
 typeIndex < attribTypeCount;
 ++typeIndex) {

 if ((status = C_GetAttributeType
 (extraAttributes, typeIndex, &attribType,
 &attribTypeLen)) != 0)
 break;

 if ((status = C_GetAttributeValueCount
 (extraAttributes, attribType, attribTypeLen,
 &valueCount)) != 0)
 break;

 for (valueIndex = 0;
 valueIndex < valueCount;
 ++valueIndex) {
 if ((status = C_GetStringAttribute
 (extraAttributes, attribType, attribTypeLen,
 valueIndex, &valueTag, &value, &valueLen)) !=0)
 break;
C h a p t e r 1 3 R e t r i e v i n g C e r t i f i c a t e I n f o r m a t i o n 22 1

Retrieving Attributes-Object Information
Remember, Cert-C returns a pointer to the value. That pointer points to a location
inside the attributes object and belongs to Cert-C. If you want to save this
information, then you should copy it.

The DisplayAttributeValue routine is not a Cert-C routine. It is a placeholder for a
routine that reads the information so that you can verify its accuracy. In this way, you
can make sure it conforms to your CA’s guidelines. You write this routine to best fit
your application.

Step 4: Perform operations
In this example, you do not perform any operations. There is no signature to verify on
an attributes object. You should have already verified the signature on the entire
certificate request.

Step 5: Destroy the attributes object
At this stage, you might want to keep and reuse the attributes object. For example,
you will need to use an attributes object in some of the examples presented in the
following chapters. However, if you no longer need the attributes object, making sure
you have saved any information you need for later, then you can destroy it now. This
frees up any memory allocated by Cert-C. If an object is NULL_PTR, then Cert-C does
nothing.

 if ((status = DisplayAttributeValue
 (attribType, attribTypeLen, valueIndex, valueTag,
 value, valueLen)) != 0)
 break;

 }
 if (status !=0) break;
}
if (status != 0) break;

CLEANUP:
 C_DestroyAttributesObject (&extraAttributes);
2 2 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Retrieving Extensions-Object Information
Retrieving Extensions-Object Information
Cert-C uses an EXTENSIONS_OBJ object to represent X.509 v3 extensions. Cert-C
provides APIs for you to look at the information in an extensions object, in a form you
can understand. In this example, you display the information from an extensions
object in a readable form.

You can call the C_GetExtensionCount to find out how many extensions are in the
object. Then you call C_GetExtensionTypeByIndex or C_GetExtensionInfo. Call
C_GetExtensionValue to get the actual information.

Step 1: Create an extensions object
See how to create an extensions object in “Creating an Extensions Object” on
page 257.

Step 2: Set the extensions object with the extensions information
in BER format
See how to set the extensions object in “Creating an Extensions Object” on page 257.

Step 3: Read the extension information
You now have an extensions object that contains all the extensions. You can see this
information using various C_Get* functions.

An extensions object can contain a number of extensions, so you must first find out
how many extensions there are in the extensions object. You use the
C_GetExtensionCount function to get the extension count. For more information
about C_GetExtensionCount, see the API Reference.

Using the C_GetExtensionCount function, you get the extension count.

int C_GetExtensionCount (
 EXTENSIONS_OBJ extensionsObject, /* extensions object */
 unsigned int *extensionCount /* (out) extension entry count */
);

unsigned int extenCount = 0;
C h a p t e r 1 3 R e t r i e v i n g C e r t i f i c a t e I n f o r m a t i o n 22 3

Retrieving Extensions-Object Information
You now know how many extensions there are in the extensions object. Next, you
need to get each extension’s information. You can do this by making a call to the
C_GetExtensionInfo function, which gets extension information at a particular index,
for each extension in the extensions object. For more information about the
C_GetExtensionInfo function, see the API Reference.

Note: The fields returned from this function are read-only. You do not have to create
any objects or items before you call this function. Do not call any functions
that modify these fields. Do not call any C_Set* or C_Destroy* functions on
these fields.

If an extension is found, Cert-C places the extension information in an
EXTENSION_INFO structure.

Using the C_GetExtensionInfo function, you make a call for each extension in the
extensions object. If an extension is found, the extension information is placed in an
EXTENSION_INFO structure. The type and typeLen fields of extensionInfo are set to the
type and type-length of the extension. The criticalFlag field is set to the extension’s
criticality flag. The valueCount field is set to the number of values in the extension’s
value list. The reserved field is set to NULL_PTR, and should be ignored.

status = C_GetExtensionCount (extenObj, &extenCount);
if (status != 0)
 goto CLEANUP;

int C_GetExtensionInfo (
 EXTENSIONS_OBJ extensionsObject, /* Extensions object */
 unsigned int index, /* Index of extension */
 EXTENSION_INFO *extensionInfo /* Extension information */
);

typedef struct EXTENSION_INFO {
 unsigned char *type; /* Extension's OID */
 unsigned int typeLen; /* Extension's OID length */
 unsigned int criticalFlag; /* Extension criticality */
 unsigned int valueCount; /* Extension value entries count */
 POINTER reserved; /* Reserved for future use */
} EXTENSION_INFO;

EXTENSION_INFO extenInfo;
unsigned int i;
2 2 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Retrieving Extensions-Object Information
You can now retrieve each extension value. You can do this using the
C_GetExtensionValue function. For more information about the
C_GetExtensionValue function, see the API Reference.

Note: The fields returned from this function are read-only. You do not have to create
any objects or items before you call this function. Do not call any functions
that modify these fields. Do not call any C_Set* or C_Destroy* functions on
these fields.

Using the C_GetExtensionValue function, you get the extension value, referenced by j
in the extension's value list, for a particular extension type. The target extension is
referenced by i. This function returns a POINTER to a value. You need to cast this
pointer to the appropriate data structure that corresponds to the extension type. To
cross-reference the extension types to their corresponding Cert-C data structures, see
the “Extension Types and Structures” section in the API Reference.

Note: The sample program utilities samples/common/include/extnhlp.h and
samples/common/source/extnhlp.c include routines that you can use to print
out the data, pointed to by C_GetExtensionValue’s *value, in a readable

for (i = 0; i < extenCount; i++) {
 status = C_GetExtensionInfo (extenObj, i, &extenInfo);
 if (status != 0)
 goto CLEANUP;

int C_GetExtensionValue (
 EXTENSIONS_OBJ extensionsObject, /* Extensions object */
 unsigned int extensionIndex, /* Extension index */
 unsigned int valueIndex, /* Index into extension's value list */
 POINTER *value /* (out) Extension's value */
);

POINTER extenValue = NULL_PTR;
unsigned int j;

/* Examine each value for this particular extension. */
for (j = 0; j < extenInfo.valueCount; j++) {
 status = C_GetExtensionValue (extenObj, i, j, &extenValue);
 if (status != 0)
 goto CLEANUP;
}

C h a p t e r 1 3 R e t r i e v i n g C e r t i f i c a t e I n f o r m a t i o n 22 5

Retrieving Extensions-Object Information
format, for sample purposes. You can also look at the samples/common/
include/extnutil.h and samples/common/source/extnutil.c sample
program utilities, which use these routines.

Step 4: Perform operations
In this example, you do not perform any operations. There is no signature to verify on
an extensions object. You should have already verified the signature on the entire
certificate request.

Step 5: Destroy the extensions object
At this stage, you might want to keep and reuse the extensions object. For example,
you need to use an extensions object in some of the examples presented in the
following chapters. However, if you no longer need the extensions object, making
sure you have saved any information you need later, then you can destroy it now.
This frees up any memory allocated by Cert-C. If an object is NULL_PTR, then Cert-C
does nothing.

CLEANUP:
 C_DestroyAttributesObject (&extraAttributes);
2 2 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 14

CRL and CRL Entries
Each certificate has an expiration date. After expiration, the certificate owner should
not use the certificate’s key pair. Also, you should not use another entity’s public key,
for example, to envelope or verify (if the signature post-dates the expiration date), if
the entity’s certificate has expired.

Note: There are exceptions to this rule. For example, if you have an encrypted
document that was encrypted using a key pair that was valid when
encrypting, but, it is now expired. In this example, you need to use the
expired key pair to decrypt the document.

A certificate owner or CA might want to indicate that a particular certificate is no
longer valid, even before the expiration date. The key pair might have been
compromised, or an employee might have left the company and no longer has the
authority to use the certificate, and its related key pair. In this case, you need to
revoke the certificate.

It is the CA’s responsibility to revoke a certificate it issued. When a CA revokes a
certificate, it must make this information known. It does this by compiling a list of
certificates that have been revoked and distributing this list. This list is called a CRL.
The CRL is not a list of certificates, but rather a list of certificate serial numbers along
with the revocation dates.

Cert-C represents CRL information with a CRL_OBJ object. The CRL object has, as one
of its components, the CRL_ENTRIES_OBJ. Through this object, you can add or delete
the certificate serial numbers to the CRL. The CRL_ENTRIES_OBJ object is created for
22 7

you when you create a CRL object.

Cert-C also provides APIs that you can use to perform revocation checking. Your
application can call the C_CheckCertRevocation function directly, using either CRLs
or OCSP, to check the status of a particular certificate. When checking a certificate
against a CRL, you will most likely use the C_CheckCertRevocation function. To
validate a certificate chain, you use the C_CheckCertRevocation function with the
C_BuildCertPath. To learn more about certificate revocation and certificate chaining,
see “Certificate Revocation List” on page 39 and “Certificate Chaining” on page 38.

In this chapter, you work through examples that show you how to manipulate
CRL_OBJ and CRL_ENTRIES_OBJ objects directly. You might want to manipulate these
objects directly to parse or display CRL contents when writing or modifying certain
service providers. Cert-C provides APIs for you to create a CRL object and to set, get,
or modify the information in a CRL object. There are also APIs to set, get, or modify a
CRL entries object, as well as adding or deleting a CRL entry to or from a CRL object.
2 2 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

CRL Object
CRL Object
Cert-C represents CRL information with a CRL_OBJ object. Use CRL objects to keep
track of revoked certificates. A CRL object contains a list of CRL entries; each consists
of a certificate serial number and a revocation time. The serial numbers identify the
certificates that were revoked by the CRL issuer. In addition, just like certificates,
CRLs have an issuer, a validity period, and a signature.

If the CRL version is CRL_VERSION_2, then the CRL_OBJ can also contain an
EXTENSIONS_OBJ, which represents X.509 v3 CRL extensions. Each CRL entry can also
contain an EXTENSIONS_OBJ, which represents X.509 v3 CRL Entry extensions.

CRL-Object Functions
You must use a Cert-C function to view or modify information in a CRL_OBJ object.
You cannot assume that the CRL_OBJ points to any specific information. Some
examples of the functions that Cert-C provides to manipulate a CRL object are listed
in the following table.

Create, Use, or Destroy CRL_OBJ Functions

Set or Modify CRL_OBJ Functions

Function Description

C_BuildCertPath Constructs a certificate path and verifies a certificate or CRL.

C_CheckCertRevocation Checks a certificate’s revocation status.

C_CreateCRLObject Creates a CRL object.

C_DestroyCRLObject Destroys a CRL object, freeing the memory that the CRL object
occupied.

C_SignCRL Signs a CRL object.

C_VerifyCRLSignature Verifies the signature on a CRL object.

Function Description

C_PrepareUnsignedCRLForIssuer Prepares an empty, unsigned CRL for an issuer.

C_SetCRLBER Sets the BER encoding of a CRL object.
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 22 9

CRL-Object Functions
Get CRL_OBJ Functions

C_SetCRLFields Sets a CRL object with the given information in the
given CRL_FIELDS structure.

C_SetCRLInnerBER Sets a CRL object to the BER encoding of the ‘inner’
portion of the CRL, which does not contain the
signature.

Function Description

C_GetCRLDER Gets the DER encoding of a CRL object.

C_GetCRLFields Gets a CRL_FIELDS structure corresponding to the CRL object.

C_GetCRLInnerDER Gets the DER encoding of the ‘inner’ portion of the CRL object, which
does not contain the signature.

Function Description
2 3 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a CRL Object
Creating a CRL Object
In this example, you assume the role of a CA. In this capacity, you are responsible for
revoking certificates and making certificate-revocation information known. You do
this by building a CRL.

When building a CRL, you should follow the five-step process Create, SetFields, Sign,
GetDER, and Destroy. There is one variation to this process: step 1 initializes some of
the CRL object’s values outlined in the CRL_FIELDS structure. In step 2, you need to
get the structure first, and then set the fields.

You need a CERT_CTX context when creating a CRL object. In this example, assume
you have a previously initialized CERT_CTX ctx. You can look at the samples/crl/
crl.c sample program and use it to experiment with creating and parsing CRL
objects.

Step 1: Create a CRL object
To create a CRL object, you use the C_CreateCRLObject function. For more
information on C_CreateCRLObject, see the API Reference.

Using the C_CreateCRLObject function, you declare a variable to be CRL_OBJ and pass
its address as the argument. The Cert-C context holds information that Cert-C uses to
handle extensions, as well as information about registered service providers. The
return value of this routine is a zero (0) if successful and a non-zero error code when
something goes wrong. Any clean-up code always executes, whether an error occurs
or not. You should initialize an object to NULL_PTR; if there is an error before an object
has the chance to be created, the clean-up code acts on a NULL_PTR and does not do
any damage.

int C_CreateCRLObject (
 CRL_OBJ *crlObj, /* (out) CRL object */
 CERTC_CTX ctx /* Cert-C context */
);

CRL_OBJ crlObject = (CRL_OBJ)NULL_PTR;

status = C_CreateCRLObject (crlObject, ctx);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 23 1

Creating a CRL Object
When you call the C_CreateCRLObject function, besides creating a CRL object, you
also initialize some of the associated CRL_FIELDS structure fields with the CRL object’s
values.

Step 2: Retrieve, update, and set CRL information
In this step, you retrieve the CRL information, update the CRL object information,
and then set the CRL information in the CRL object.

Step 2a: Retrieve the CRL information
You now need to retrieve the CRL information. This is because the
C_CreateCRLObject initializes some values in the associated CRL_FIELDS structure.
You need to get the CRL_FIELDS structure before you set it with additional information
later in step 2.

Using the C_GetCRLFields function, you get the CRL_FIELDS structure from the
CRL_OBJ that you just created. In the first argument, you pass the newly created
CRL_OBJ. The second argument is the CRL_FIELDS structure associated with the newly
created CRL_OBJ.

At this point, if you look at the associated CRL_FIELDS structure, it contains the

typedef struct CRL_FIELDS {
 UINT2 version; /* CRL_VERSION_1 (default) or CRL_VERSION_2 */
 int signatureAlgorithm;
 NAME_OBJ issuerName;
 UINT4 lastUpdate;
 UINT4 nextUpdate;
 CRL_ENTRIES_OBJ crlEntries;
 EXTENSIONS_OBJ crlExtensions;
 POINTER reserved;
} CRL_FIELDS;

CRL_FIELDS crlFields;

status = C_GetCRLFields (crlObject, &crlFields);
if (status != 0)
 goto CLEANUP;
2 3 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a CRL Object
following initialized values.

Step 2b: Enter the new CRL information
Now that you have created a CRL object and initialized some of the associated
CRL_FIELDS structure’s fields, you need to enter the remaining CRL information.

In this example, assume that the CRL updates are one week apart. Each CA decides its
own policy for when their CRL is updated.

You need to set the issuer name for the CRL. As a CA, assume you have the
BER-encoded issuer name.

The GetCAInfoFromStorage routine is not a Cert-C routine. It is a placeholder for a
routine that obtains the CA’s BER-encoded X.500 Name. You will write this routine to
best fit your application.

Table 14-1 The CRL_FIELDS structure after creating a CRL_OBJ

Field Value
version CRL_VERSION_1

signatureAlgorithm SA_MD5_WITH_RSA_ENCRYPTION

issuerName Empty NAME_OBJ
lastUpdate 0
nextUpdate 0
crlEntries Empty CRL_ENTRIES_OBJ
crlExtensions Empty EXTENSIONS_OBJ
reserved 0

#define ONE_WEEK_IN_SECONDS 0x93a80

unsigned char *caNameBERFromStorage = NULL_PTR;
unsigned int caNameBERFromStorageLen;

status = GetCAInfoFromStorage (&caNameBERFromStorage,
 &caNameBERFromStorageLen);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 23 3

Creating a CRL Object
You set the last update time to be the current time and the next update value to be a
week from the last update time.

In this example, you leave the version and signature algorithm as the default. You
also do nothing with the CRL_ENTRIES_OBJ and EXTENSIONS_OBJ objects. For more
information about modifying a CRL_ENTRIES_OBJ object, see “CRL-Entries Object
Functions” on page 241. See chapter 15, “Extensions,” for more information about
modifying a EXTENSIONS_OBJ object.

Step 2c: Set the CRL information
You have just modified the CRL_FIELDS structure from the crlObj. Now, you must call
C_SetCRLFields to reconcile the internal state of the CRL_OBJ with the changes made
to the CRL_FIELDS structure. The CRL_OBJ is not properly initialized with the new data
and cannot be used in any operations, until you do this step.

You now have a CRL object filled with all the proper information, although it has no
entries. An entry would be a revoked certificate. This may in fact happen in real life.
For information on how to add a CRL entry, see “Adding a CRL Entry to a CRL
Object” on page 243. Once you have set all the information, you can go ahead and
sign the CRL. A CRL is worthless unless it is signed by the issuing CA.

Step 3: Sign the CRL object
To sign the CRL, you use the C_SignCRL function. For more information about

status = C_SetNameBER (crlFields.issuerName, caNameBERFromStorage,
 caNameBERFromStorageLen);
if (status != 0)
 goto CLEANUP;

T_time (&(crlFields.lastUpdate));
crlFields.nextUpdate = crlFields.lastUpdate + ONE_WEEK_IN_SECONDS;

status = C_SetCRLFields (crlObject, &crlFields);
if (status != 0)
 goto CLEANUP;
2 3 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating a CRL Object
C_SignCRL, see the API Reference.

The first argument is the CRL_OBJ that you created. The second argument is a
Crypto-C key object, B_KEY_OBJ. It can point to a private key on a hardware device.
For more information, see “Cert-C PKCS #11 Database Service Provider” and “Cert-C
CryptoAPI Database Service Provider”, in the “Service Provider” section of the API
Reference.

For this example, assume that you already have a B_KEY_OBJ caPrivateKey that
contains the issuer’s private key. For more information about the B_KEY_OBJ object,
see Appendix A. The GetCAPrivateKeyObject routine is not a Cert-C routine. It is a
placeholder for a routine that obtains the issuer’s private key. You write this routine
to best fit your application.

Step 4: Retrieve the CRL information in DER format
You now have a signed CRL object; you need to communicate this CRL with others
who may not use Cert-C. Therefore, you need to get the CRL information into a
format everyone can understand. To do this you use the C_GetCRLDER function to
retrieve the DER encoding of the certificate-request information. For more

int C_SignCRL (
 CRL_OBJ crlObj, /* (mod) CRL object */
 B_KEY_OBJ privateKey /* Signing key */
 . . .
);

B_KEY_OBJ caPrivateKey = (B_KEY_OBJ)NULL_PTR;

status = GetCAPrivateKeyObject (&caPrivateKey);
if (status != 0)
 goto CLEANUP;

status = C_SignCRL (crlObject, caPrivateKey);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 23 5

Creating a CRL Object
information about the C_GetCRLDER function, see the API Reference.

Using the C_GetCRLDER function, you give Cert-C a CRL object, the address of a
pointer and the address of an unsigned int. At the addresses, Cert-C places a pointer
to the DER encoding of the CRL and its length. What the pointer to the DER encoding
points to belongs to Cert-C. You do not need to allocate or free that memory. Also,
you should not attempt to adjust the data yourself. The information remains
unchanged until you call a Cert-C routine that modifies or destroys the attributes
object. To save this information, copy it into a file or your own buffer.

The SaveCRLDER routine is not a Cert-C routine. It is a placeholder for a routine that
obtains the DER-encoded CRL information. You write this routine to best fit your
application.

Step 5: Destroy the CRL and key objects
If you no longer need the CRL object, making sure you have saved any information
you need later, then you can destroy it now. This frees up any memory allocated by
Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

int C_GetCRLDER (
 CRL_OBJ crlObject, /* CRL object */
 unsigned char **der, /* (out) DER-encoded CRL */
 unsigned int *derLen /* (out) length of DER-encoded CRL */
);

unsigned char *crlDer;
unsigned int crlDerLen;

status = C_GetCRLDER (crlObject, &crlDer, &crlDerLen);
if (status != 0)
 goto CLEANUP;

status = SaveCRLDER (crlDer, crlDerLen);
if (status != 0)
 goto CLEANUP;

CLEANUP;
 C_DestroyCRLObject (&crlObject);
2 3 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Reading a CRL Object
Reading a CRL Object
In this example, you assume the role of a person who has received the DER encoding
of a CRL. Before you can use the CRL information, you need to read the CRL
information and verify the signature on the CRL.

If you are reading a CRL, you should follow the five-step process Create, SetBER,
VerifySignature, GetFields, and Destroy.

You need a CERT_CTX context when creating a CRL object. In this example, assume
you have a previously initialized CERT_CTX ctx. You can look at the samples/crl/
crl.c sample program and use it to experiment with creating and parsing CRL
objects.

Step 1: Create a CRL object
First, you need to create a CRL object to hold the CRL information. To create a CRL
object, you use the C_CreateCRLObject function. You have already created a CRL
object, see “Creating a CRL Object” on page 231. For more information on
C_CreateCRLObject, see the API Reference.

Step 2: Enter the CRL information
Next, you set the CRL_OBJ with the DER-encoded CRL object. To do this you use the
C_SetCRLBER function. For more information about the C_SetCRLBER function, see the
API Reference.

The first argument is the CRL_OBJ you just created. The second argument points to the
BER encoding of the CRL object. The third argument is the length of the CRL
information. Assume the BER encoding of the CRL and its length are located at crlBER

int C_CreateCRLObject (
 CRL_OBJ *crlObj, /* (out) CRL object */
 CERTC_CTX ctx /* Cert-C context */
);

int C_SetCRLBER (
 CRL_OBJ crlObject, /* (in/out) CRL object */
 unsigned char *ber, /* BER-encoded CRL */
 unsigned int berLen /* Length of BER-encoded CRL */
);
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 23 7

Reading a CRL Object
and crlBERLen.

Step 3: Read the CRL information
You read a CRL to see if a particular certificate is on the list. To trust the CRL
information, you need to know if it is current and that the signature on the CRL is
valid. If you know the CA that issued the CRL, you can go ahead and verify the
signature on the CRL. If not, the CRL lists the CRL issuer name. In this example, you
read the information first before verifying the signature. You get the name of the
issuer and use it to retrieve the issuer’s public key from storage.

To read the CRL information, you use the C_GetCRLFields function. For more
information about C_GetCRLFields, see the API Reference.

First, you declare a CRL_FIELDS structure as a variable. Then, you pass its address to
the C_GetCRLFields function, along with a CRL object. Cert-C returns the CRL
information in the CRL_FIELDS structure. You also declare a variable to be B_KEY_OBJ;
this key object is used later in this example to store the issuer’s public key. For more
information about the B_KEY_OBJ object, see Appendix A.

You now have a CRL_FIELDS structure with the CRL’s information. You still need to
actually read the CRL information. To do this you need a routine that displays the

unsigned char *crlBER;
unsigned int crlBERLen;

status = C_SetCRLBER (crlObject, crlBER, crlBERLen);
if (status != 0)
 goto CLEANUP;

int C_GetCRLFields (
 CRL_OBJ crlObject, /* CRL object */
 CRL_FIELDS *crlFields /* (out) CRL_FIELDS structure */
);

CRL_FIELDS crlFields;
B_KEY_OBJ caPublicKeyObject = (B_KEY_OBJ)NULL_PTR;

status = C_GetCRLFields (crlObject, &crlFields);
if (status != 0)
 goto CLEANUP;
2 3 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Reading a CRL Object
CRL information.

DisplayCRLInfo is not a Cert-C routine. It is a placeholder for a routine that reads the
CRL information so that you can read the issuer name, the next update time, and the
last update time. You write this routine to best fit your application.

If the next update time has already passed, you might not want to trust this CRL. You
can determine if a certificate has been revoked from an out-of-date CRL (unless it is
on hold). However, you cannot conclusively determine that a certificate is valid. The
amount of trust that you put into a CRL should depend on your application of a
certificate. For more information about CRLs, see “Certificate Revocation List” on
page 39. For an example of how to check the validity of a certificate, see “Validating a
Certificate Path” on page 193. You can use the C_CheckCertRevocation function with
the Cert-C CRL Revocation Status service provider.

Now that you know the CRL’s issuer name, you can use it to retrieve the issuer’s
public key. The RecallCAPublicKey routine is not a Cert-C routine. It is a placeholder
for a routine that retrieves the issuer’s public key, so that you can verify the signature
on the CRL. You write this routine to best fit your application.

In this example, RecallCAPublicKey retrieves the issuer’s public key from storage; for
example, a database of CA public keys. You pass the associated CRL_FIELDS structure
to the routine, which contains the issuerName. The routine matches the CA’s name
with a public key and builds the key object. For more information about creating a
key object, see “Using BSAFE Crypto-C” on page 287. A more comprehensive
description on using Crypto-C is in the Crypto-C Developer’s Guide.

Step 4: Verify the CRL signature
The CRL was signed by the issuer using the issuer’s private key. So now that you
have the CRL issuer’s public key, you can verify the signature on the CRL.

Using the C_VerifyCRLSignature function, you verify the signature. For more

status = DisplayCRLInfo (&crlFields);
if (status != 0)
 goto CLEANUP;

status = RecallCAPublicKey (&certFields, &caPublicKeyObject);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 23 9

Reading a CRL Object
information about C_VerifyCRLSignature, see the API Reference.

Step 5: Destroy the CRL object
Any object you create you must destroy, making sure you have saved any
information you need later. This frees up any memory allocated by Cert-C. If an object
is NULL_PTR, then Cert-C does nothing.

status = C_VerifyCRLSignature (crlObject, caPublicKeyObject);
if (status != 0)
 goto CLEANUP;

CLEANUP;
 C_DestroyCRLObject (&crlObject);
 B_DestroyKeyObject (&caPublicKeyObject);
2 4 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

CRL Entries Object
CRL Entries Object
Some CRL functions act on CRL_ENTRIES_OBJ objects instead of on CRL_OBJ objects.

Use the CRL_ENTRIES_OBJ object to access CRL entries information stored in a
CRL_OBJ. The CRL_ENTRIES_OBJ is the part of the CRL_OBJ object that actually contains
the serial numbers, revocation times, and X.509 v3 CRL Entry extensions for each
revoked certificate.

Cert-C does not provide a way to create or destroy a CRL_ENTRIES_OBJ. Instead, it
must be accessed through the crlEntries field of the CRL_FIELDS data structure. To get
a CRL_FIELDS structure for the examination of the CRL_ENTRIES_OBJ, call
C_GetCRLFields. To obtain the CRL_ENTRIES_OBJ, access the crlEntries field of the
CRL_FIELDS structure.

Cert-C provides functions to add and delete entries in the CRL_ENTRIES_OBJ as well as
to reset the CRL_ENTRIES_OBJ. After CRL entries are added or deleted, you must call
C_SignCRL to make the CRL valid again.

CRL-Entries Object Functions
You must use a Cert-C function to view or modify information in a CRL_ENTRIES_OBJ.
When you call one of these functions, you cannot assume that the CRL_ENTRIES_OBJ
points to any specific information. Some examples of the functions that Cert-C
provides to manipulate a CRL-entries object are listed in the following table.

Set or Modify CRL_ENTRIES_OBJ Functions

Function Description

C_AddCRLEntry Adds a CRL entry to a CRL_ENTRIES_OBJ.

C_DeleteCRLEntry Deletes an entry from a CRL_ENTRIES_OBJ.

C_FindCRLEntryBySerialNumber Finds a CRL entry given its serial number.

C_ResetCRLEntries Resets a CRL_ENTRIES_OBJ.
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 24 1

CRL-Entries Object Functions
Get CRL_ENTRIES_OBJ Functions

The following examples show you how to manipulate the CRL entries object. If you
are using high-level APIs in your application—for example,
C_CheckCertRevocation—then it is likely that you do not need to manipulate the
CRL-entries object directly.

Function Description

C_GetCRLEntriesCount Gets the number of entries in a CRL_ENTRIES_OBJ.

C_GetCRLEntry Gets an entry from a CRL_ENTRIES_OBJ.
2 4 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Adding a CRL Entry to a CRL Object
Adding a CRL Entry to a CRL Object
In this example, you add a CRL entry to the CRL object that you created in the
example, “Creating a CRL Object” on page 231. You can look at the samples/crl/
crl.c sample program and use it to experiment with creating and parsing CRL entry
objects.

Step 1: Create a CRL-entries object
You do not need to create a CRL-entries object, it is created for you when you create
the CRL object. For more information about creating a CRL object, see “Creating a
CRL Object” on page 231.

Step 2: Retrieve CRL_FIELD information, enter CRL-entries
information, and set the CRL object
In this step, you retrieve CRL object’s CRL-fields information, you enter the
CRL-entries information, and then you set the CRL object with the new CRL
information.

Step 2a: Retrieve the CRL_FIELD information
To add CRL-entry information to a CRL, you need to retrieve the CRL object’s
CRL_FIELDS structure. One of the structure’s elements is a CRL_ENTRIES_OBJ. This
object contains a CRL_ENTRIES_INFO structure where the CRL-entries information is
stored.

Using the C_GetCRLFields function, you get the CRL_FIELDS structure from the
CRL_OBJ object. In the first argument, you pass the CRL_OBJ. The second argument is
the CRL_FIELDS structure associated with the CRL_OBJ.

Step 2b: Enter the CRL-entries information
To revoke a certificate, you add the certificate’s serial number to the CRL. You do this
using the C_AddCRLEntry function. For more information about C_AddCRLEntry, see

CRL_FIELDS crlFields;

status = C_GetCRLFields (crlObject, &crlFields);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 24 3

Adding a CRL Entry to a CRL Object
the API Reference.

You add a new CRL entry to the CRL-entries object with the value given in
crlEntryInfo. The index of the new entry is returned in index. The data structure for
crlEntryInfo is CRL_ENTRY_INFO. For more information about CRL_ENTRY_INFO, see the
API Reference.

Assume you already have a CRL object named crlObject, and that you have retrieved
its CRL_FIELDS structure, which contains the CRL_ENTRIES_OBJ, using the
C_GetCRLFields function. You also have the serial number of the certificate to be
revoked in ITEM serialNumber.

You set the CRL_ENTRIES_OBJ CRL_ENTRY_INFO.serialNumber value to the value in ITEM.
In this example, you set the CRL_ENTRY_INFO.crlEntryExtensions object to a properly
cast NULL_PTR. For more information about extensions, see “Extensions Object” on
page 254. You should also set the reserved value to NULL_PTR. The T_time function
obtains the current time, and you set CRL_ENTRY_INFO’s actionTime value to this
current time.

int C_AddCRLEntry (
 CRL_ENTRIES_OBJ crlEntriesObject, /* (in/out) CRL entries object */
 CRL_ENTRY_INFO *crlEntryInfo, /* Data for CRL entry */
 unsigned int *index /* (out) Index of new CRL entry */
);

typedef struct CRL_ENTRY_INFO{
 ITEM serialNumber; /* Certificate serial number */
 UINT4 actionTime; /* Time cert is revoked or held */
 EXTENSIONS_OBJ crlEntryExtensions; /* Extensions object */
 POINTER reserved; /* Reserved for future use */
} CRL_ENTRY_INFO;

ITEM serialNumber;
CRL_FIELDS crlFields;
CRL_ENTRY_INFO crlEntryInfo;
unsigned int crlEntryIndex;

crlEntryInfo.serialNumber = serialNumber;
T_time (&(crlEntryInfo.actionTime));
crlEntryInfo.crlEntryExtensions = (EXTENSIONS_OBJ)NULL_PTR;
crlEntryInfo.reserved = NULL_PTR;
2 4 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Adding a CRL Entry to a CRL Object
You now have an updated CRL_ENTRY_INFO structure. You need to add this to the
CRL-entries object, using the C_AddCRLEntry function. For more information about
the function, see the API Reference.

To add the new CRL-entry information to the CRL-entries object, you pass the
address of the updated CRL_ENTRY_INFO structure to the C_AddCRLEntry function.
Cert-C returns the address to the index of the new entry in crlEntryIndex. The index is
to keep track of the certificates in the CRL. You should note that the index number is
not permanent. If you delete an entry, the indices of entries after the deleted entry are
moved up by one.

At this point you stop working directly with the CRL-entries object.

Step 2c: Set the CRL object

Since you just changed an element of the CRL object, you now need to call the
C_SetCRLFields function to update the CRL object. For more information about the
C_SetCRLFields function, see the API Reference.

Step 3: Sign the CRL object
You have just updated the CRL object so now you need to resign it. To sign the CRL,
you use the C_SignCRL function. For more information about signing the CRL object
see “Step 3: Sign the CRL object” on page 234.

int C_AddCRLEntry (
 CRL_ENTRIES_OBJ crlEntriesObject, /* (in/out) CRL entries object */
 CRL_ENTRY_INFO *crlEntryInfo, /* Data for CRL entry */
 unsigned int *index /* (out) Index of new CRL entry */
);

status = C_AddCRLEntry (crlFields.crlEntries, &crlEntryInfo,
 &crlEntryIndex);
if (status != 0)
 goto CLEANUP;

int C_SetCRLFields (
 CRL_OBJ crlObj, /* (in/out) CRL object */
 CRL_FIELDS *crlFields /* CRL fields */
);
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 24 5

Adding a CRL Entry to a CRL Object
Step 4: Retrieve the CRL information in DER format
For more information about how to retrieve the CRL information in DER format, see
“Step 4: Retrieve the CRL information in DER format” on page 235.

Step 5: Destroy the CRL object
If you no longer need the CRL object, making sure you have saved any information
you need later, then you destroy it now. This frees up any memory allocated by
Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

You did not create the CRL-entries object, so you do not need to destroy it.

CLEANUP;
 C_DestroyCRLObject (&crlObject);
2 4 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Deleting a CRL Entry from a CRL Object
Deleting a CRL Entry from a CRL Object
In this example, you delete a CRL entry. You might want to do this when a revoked
certificate has expired, and you want to save space.

Step 1: Create a CRL-entries object
You do not need to create a CRL-entries object, it is created for you when you create
the CRL object. For more information about creating a CRL object, see “Creating a
CRL Object” on page 231.

Step 2: Retrieve CRL_FIELDS information, delete CRL-entries
information, and set the CRL object.
In this step, you retrieve the CRL object’s CRL fields information, delete a CRL entry,
and then set the CRL object with the update CRL information.

Step 2a: Retrieve the CRL_FIELDS information
To delete a CRL entry from a CRL, you need to retrieve the CRL object’s CRL_FIELDS
structure. One of the structure’s elements is a CRL_ENTRIES_OBJ. This object contains a
CRL_ENTRIES_INFO structure where the CRL-entries information is stored.

Using the C_GetCRLFields function, you get the CRL_FIELDS structure from the
CRL_OBJ object. In the first argument, you pass the CRL_OBJ. The second argument is
the CRL_FIELDS structure associated with the CRL_OBJ.

Step 2b: Delete the CRL entries information
To take a certificate off the CRL, you need the index number of the certificate you
want to remove. In the example, “Adding a CRL Entry to a CRL Object” on page 243,
when you added an entry, Cert-C returned the index number. However, the index
number might have changed since you first added the certificate to the CRL. You
need to find its current index. You can find it by calling the
C_FindCRLEntryBySerialNumber function. For more information about the

CRL_FIELDS crlFields;

status = C_GetCRLFields (crlObject, &crlFields);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 24 7

Deleting a CRL Entry from a CRL Object
C_FindCRLEntryBySerialNumber function, see the API Reference.

If you do not know the serial number, you can look at all the entries until you find the
correct one. The example, “Reading a CRL-Entries Object” on page 250 describes how
you can do that.

To delete the CRL entry, you use the C_DeleteCRLEntry function. For more
information about the C_DeleteCRLEntry function, see the API Reference.

In this example, you assume the serial number is stored in ITEM serialNumber. You
delete the CRL entry by passing the CRL-entry object’s CRL_ENTRIES_INFO structure
and the entries crlEntryIndex to the C_DeleteCRLEntry function. Cert-C deletes the
entry in the CRL-entries object referenced by crlEntryIndex. The entries after
crlEntryIndex are all shifted back by one.

Step 2c: Set the CRL object

Since you just changed an element of the CRL object, you now need to call the
C_SetCRLFields function to update the CRL object. For more information about the

ITEM serialNumber;
unsigned int crlEntryIndex;

status = C_FindCRLEntryBySerialNumber (crlFields.crlEntries,
 serialNumber.data,
 serialNumber.len, &crlEntryIndex);
if (status != 0)
 goto CLEANUP;

int C_DeleteCRLEntry (
 CRL_ENTRIES_OBJ crlEntriesObject, /* (in/out) CRL entries object */
 unsigned int crlEntryIndex /* Index of entry to be deleted */
);

status = C_DeleteCRLEntry (crlFields.crlEntries, crlEntryIndex);
if (status != 0)
 goto CLEANUP;
2 4 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Deleting a CRL Entry from a CRL Object
C_SetCRLFields function, see the API Reference.

Step 3: Sign the CRL object
You have just updated the CRL object; now you need to sign it. To sign the CRL, you
use the C_SignCRL function. For more information about signing the CRL object see
“Step 3: Sign the CRL object” on page 234.

Step 4: Retrieve the CRL information in DER format
For more information about how to retrieve the CRL information in DER format, see
“Step 4: Retrieve the CRL information in DER format” on page 235.

Step 5: Destroy the CRL object
If you no longer need the CRL object, making sure you have saved any information
you need later, then you destroy it now. This frees up any memory allocated by
Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

You did not create the CRL-entries object, so you do not need to destroy it.

int C_SetCRLFields (
 CRL_OBJ crlObj, /* (in/out) CRL object */
 CRL_FIELDS *crlFields /* CRL fields */
);

CLEANUP;
 C_DestroyCRLObject (&crlObject);
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 24 9

Reading a CRL-Entries Object
Reading a CRL-Entries Object
In this example, you read the CRL entries from a CRL object. You must first create a
CRL object, set it with the CRL information, and verify the signature on the CRL. In
the example, “Reading a CRL Object” on page 237, you already performed these steps
and ended up with a CRL_FIELDS structure. One of the elements in that structure was
a CRL-entries object, so you do not need to create a CRL-entries object.

Step 1: Create a CRL object
For information about how to create a CRL object, see “Step 1: Create a CRL object”
on page 237.

Step 2: Enter the CRL information
For information about how to enter the CRL information, see “Step 2: Enter the CRL
information” on page 237.

Step 3: Read the CRL entries information
At this stage, assume you have already read the CRL and verified its signature. For
more information about how to do this, see “Step 3: Read the CRL information” on
page 238 and “Step 4: Verify the CRL signature” on page 239.

You now have a CRL_FIELDS structure that contains the CRL_ENTRIES_OBJ. To look at
each of the entries in the CRL-entries object, you must first determine how many
entries there are in the object. You can find out how many entries there are using the
C_GetCRLEntriesCount function. For more information about the
C_GetCRLEntriesCount function, see the API Reference.

You pass the CRL-entries object to the C_GetCRLEntriesCount function, and Cert-C
returns a pointer to crlEntriesCount. Cert-C sets crlEntriesCount to the number of
revocation entries in the object.

Then, you get each one of the entries by index. You can do this using the
C_GetCRLEntry function. For more information about the C_GetCRLEntry function, see

int C_GetCRLEntriesCount (
 CRL_ENTRIES_OBJ crlEntriesObject, /* CRL entries object */
 unsigned int *count /* (out) Number of entries in */
 /* crlEntriesObject */
);
2 5 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Reading a CRL-Entries Object
the API Reference.

You pass the CRL-entries object and an index to the CRL entry to the C_GetCRLEntry
function. Cert-C gets the entry in the CRL list of crlEntriesObject at position
crlEntryIndex, and passes an address to a CRL_ENTRIES_INFO structure. The index will
always begin at 0 (zero) and run incrementally up to the count minus 1. When you
delete an entry, the index of each entry after the deleted entry moves up one space.

The DisplayCRLEntryInfo function is not a Cert-C routine. It is a placeholder for code
that you write to display the CRL-entries information in the form you want. You
might want to do this to find an index number to use in deleting an entry. You write
this code to best suit your application.

You can also use the C_FindCRLEntryBySerialNumber function (if you know the serial
number) to determine the index, then call the C_GetCRLEntry without looking at each
of the entries.

Step 4: Verify the CRL signature
The signature is verified on the CRL object. You already performed this step at the
start of “Step 3: Read the CRL entries information” on page 250.

unsigned int crlEntriesCount, crlEntriesIndex;
CRL_FIELDS crlFields;
CRL_ENTRY_INFO crlEntryInfo;

status = C_GetCRLEntriesCount (crlFields.crlEntries, &crlEntriesCount);
if (status != 0)
 goto CLEANUP;

for (crlEntriesIndex = 0; crlEntriesIndex < crlEntriesCount;
 ++crlEntriesIndex) {
 status = C_GetCRLEntry (crlFields.crlEntries, &crlEntryInfo,
 crlEntryIndex);
 if (status != 0)
 goto CLEANUP;

status = DisplayCRLEntryInfo (crlEntryIndex, crlEntryInfo);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 4 C R L a n d C R L E n t r i e s 25 1

Reading a CRL-Entries Object
Step 5: Destroy the CRL object
If you no longer need the CRL object, making sure you have saved any information
you need later, then you can destroy it now. This frees up any memory allocated by
Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

You did not create the CRL entries object, so you do not need to destroy it.

CLEANUP;
 C_DestroyCRLObject (&crlObject);
2 5 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Chapter 15

Extensions
X.509 v3 Certificate Extensions
Version 3 of the X.509 standard defines additional information that can be allowed on
a certificate. These additional pieces of information are called extensions. The
standard also allows each individual CA to create attributes not on the list of standard
X.509 attributes, or other information and put them into certificates. This type of
information is called the user-defined extension.

In the example, “Fulfilling the PKCS #10 Certificate Request” on page 174, you
decomposed a certificate request and got a CERT_FIELDS out of the resulting certificate
object; one of the elements of the structure was a created, but empty, extensions
object. It is through this object that you can add certificate extensions.

In “Creating a CRL Object” on page 231 and “Adding a CRL Entry to a CRL Object”
on page 243, you created two empty extensions objects after getting the fields from
the created CRL and CRL entries objects. It is through those objects that you add CRL
extensions.
25 3

Extensions Object
Extensions Object
Cert-C represents X.509 v3 extensions with an EXTENSIONS_OBJ object. The
EXTENSIONS_OBJ represents an extension set that contains one or more extension
entries. Each extension entry is represented in two forms: a DER encoding and a list of
values. The two forms provide equivalent information. The DER encoding of an
extension entry is represented by an unsigned character string. The value list gives
each value in the extension entry one at a time.

Each extension entry includes the extension type, its criticality, its handler, and a
value list. There is only one extension entry for each extension type that is in the
extensions object. The value list for some extension types can only have a single value
at a time; the value list for other extension types can have multiple values at the same
time.

When you use the C_CreateCRLObject or C_CreateCertObject function, to create a
CRL_OBJ or a CERT_OBJ, respectively, Cert-C creates an EXTENSIONS_OBJ internally. You
can access it through the crlExtensions field of the CRL_FIELDS data structure, the
crlEntryExtensions field of the CRL_ENTRY_INFO data structure, or the certExtensions
field of the CERT_FIELDS data structure. You can also create an EXTENSIONS_OBJ
explicitly (without creating a certificate or CRL object) by calling the
C_CreateExtensionsObject function.

Cert-C supports the following five X.509 v3 extensions-object types: certificate
extensions (CERT_EXTENSIONS_OBJ), CRL extensions (CRL_EXTENSIONS_OBJ), CRL entry
extensions (CRL_ENTRY_EXTENSIONS_OBJ), OCSP request extensions
(OCSP_REQUEST_EXTENSIONS_OBJ), and OCSP single-certificate extensions
(OCSP_SINGLE_EXTENSIONS_OBJ), as well as application-defined extensions. All
extensions added to an extensions object must be of the same extensions-object type.
When you call the C_CreateExtensionsObject function to create an extensions object,
you must ensure that the extension information you provide is consistent with the
extensions-object type you use. You must provide an extension-object type when you
call the following functions: C_SetExtensionBER, C_SetEncodedExtensionValue, and
C_SetExtensionsObjectBER. The X.509 v3 extension types are listed and
cross-referenced to their corresponding Cert-C data structures in the “Extension
Types and Structures” section of the API Reference. For additional details, see
EXTENSION_TYPE_INFO in the API Reference.
2 5 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Extensions-Object Functions
Extensions-Object Functions
You must use a Cert-C function to view or modify information in an EXTENSIONS_OBJ.
You cannot assume that the EXTENSIONS_OBJ points to any specific information. Some
examples of the functions that Cert-C provides to manipulate an extensions object are
listed in the following table:

Create, Reset, or Destroy EXTENSIONS_OBJ Functions

Set or Modify EXTENSIONS_OBJ Functions

Function Description

C_CreateExtensionsObject Creates an extensionsObject of type
extensionsObjectType.

C_DestroyExtensionsObject Destroys the extensionsObject by deleting all the
extensions and their value lists.

C_ResetExtensionsObject Resets an extensions object, returning the extensions
object to the state produced by calling the
C_CreateExtensionsObject function.

Function Description

C_AddExtensionValue Adds an extension value to an existing extension entry.

C_CompareExtension Compares two extensions.

C_CompareExtensions Compares two extensions objects (each representing a
set of extensions).

C_CreateExtension Creates a new extension entry in the extensions object.

C_DeleteExtensionValue Deletes an extension value.

C_DestroyExtension Destroys one extension, and its associated value list, as
referenced by the extension-entry index.

C_FindExtensionByType Finds an extension entry in the extensions object using
the extension type.

C_RegisterExtensionType Registers an application-defined extension or overrides
the default setting of a supported standard extension.

C_SelectCertByExtensions Retrieves one or more certificates identified by the
specified extensions and base subject name.

C_SetEncodedExtensionValue Sets the extension.
C h a p t e r 1 5 E x t e n s i o n s 25 5

Extensions-Object Functions
Get EXTENSIONS_OBJ Functions

C_SetExtensionBER Sets an extension with the given information.

C_SetExtensionsObjectBER Sets extensionsObject with the new extensions.

C_UnregisterExtensionType Resets or removes a registered extension handler and
extension type from ctx.

Function Description

C_GetAttributeInExtensionsObj Transfers data from an extensions object to an
attributes object.

C_GetEncodedExtensionValue Gets the encoded form of the extension's value(s).

C_GetExtensionCount Gets the total number of extension types contained
in an extensions object.

C_GetExtensionDER Gets the DER encoding of an extension. The
encoded value consists of the extension type,
criticality, and the encoding of the extension’s
value list.

C_GetExtensionValue Gets the value in the extension's value list
referenced by the given value entry index.

C_GetExtensionsInAttributesObj Transfers data from an attributes object to an
extensions object.

C_GetExtensionInfo Gets information about an extension, including
associated values.

C_GetExtensionsObjectDER Gets the DER-encoded value of all the extensions
in the extensions object.

C_GetExtensionTypeByIndex Gets the extension type from the extensions object
referenced by the index given in
extensionIndex.

C_GetExtensionTypeInfo Searches for the extension type in ctx, if an
extension type is found, then the associated
extension’s information is copied into info.

Function Description
2 5 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating an Extensions Object
Creating an Extensions Object
If you want to add an extension that is defined in the X.509 v3 standard, the task is
fairly simple. The following example, “Creating an Extensions Object” on page 257,
creates an extensions object and adds an certificate-type extension. It also adds the
extension entry’s value. In this example, you create an extensions object from scratch.
However, if you already have an existing (empty) extensions object from creating a
certificate object or you want to add an additional extension to an extensions object,
you skip step 1 and start at step 2.

You must use the CERT_CTX context when creating an extensions object. You can look
at the samples/exten/exten.c sample program and use it to experiment with creating
and parsing extensions objects.

Note: For an example of how to retrieve extension information from a
EXTENSIONS_OBJ, see “Retrieving Extensions-Object Information” on
page 223.

Step 1: Create an extensions object
To create an extensions object you use the C_CreateExtensionsObject function. For
more information on C_CreateExtensionsObject, see the API Reference.

Using the C_CreateExtensionsObject function, you declare a variable to be
EXTENSIONS_OBJ and pass its address as the argument. Next, you must provide the
extension’s extension-object type. Possible values for extensionObjectType are;
CERT_EXTENSIONS_OBJ, CRL_EXTENSIONS_OBJ, CRL_ENTRY_EXTENSIONS_OBJ,
OCSP_REQUEST_EXTENSIONS_OBJ, or OCSP_SINGLE_EXTENSIONS_OBJ, as well as
application-defined extensions.

Note: All extensions added to an extensions object must be of the same
extensions-object type.

In this example, you create a certificate-extensions object by passing
CERT_EXTENSIONS_OBJ as the extensionsObjectType parameter. You also pass Cert-C a
previously initialized Cert-C context. For more information about initializing a Cert-C

int C_CreateExtensionsObject (
 EXTENSIONS_OBJ *extensionsObject, /* Extensions object */
 unsigned int extensionsObjectType /* Extensions object type */
 CERTC_CTX ctx /* Cert-C context */
);
C h a p t e r 1 5 E x t e n s i o n s 25 7

Creating an Extensions Object
context, see “Initializing the Cert-C Context” on page 75.

The return value of this routine is a 0 (zero) for success and a non-zero error code
when something goes wrong. Any clean-up code always executes, whether an error
occurs or not. You should initialize an object to NULL_PTR, if there is an error before an
object has the chance to be created, the clean-up code acts on a NULL_PTR and does not
do any damage.

Step 2: Enter the extension information
Now that you have an extensions object, you need to set the extensions object with
extension information. This information takes two forms, an extension entry and an
extension-entry value. Each extension-entry type can have one or more values
associated with that type. To locate a particular extension entry value, Cert-C
provides two indices. One index, referred to as extensionIndex in this example, is the
index to the extension type (for example, a basic constraint type). The second index,
referred to as valueIndex in this example, is an index into the list of values associated
with a particular extension type.

To add an extension entry to the extensions object, you use the C_CreateExtension
function. For more information about the C_CreateExtension function, see the API
Reference.

Using the C_CreateExtension function, you set the extension type to one of the ET_*
OIDs. In this example, you set it to ET_ISSUER_ALTNAME to indicate Issuer Alternate
Name. Then you set the extension-type length to ET_ISSUER_ALTNAME_LEN. The OID is
a defined sequence of bytes. For example, the byte sequence 0x55, 0x1D, 0x08 is the

EXTENSIONS_OBJ extenObj = (EXTENSIONS_OBJ)NULL_PTR;

status = C_CreateExtensionsObject (&extenObj, CERT_EXTENSIONS_OBJ, ctx);
if (status != 0)
 goto CLEANUP;

int C_CreateExtension (
 EXTENSIONS_OBJ extensionsObject, /* (in/out) Extensions object */
 unsigned char *type, /* Extension OID */
 unsigned int typeLen, /* Length of extension OID */
 unsigned int *extensionIndex, /* (out) New extension's index */
 int criticality, /* Promote extension's criticality */
 EXTENSION_HANDLER *handler /* Extension handler */
);
2 5 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating an Extensions Object
X.509 standard’s way of expressing the Issuer Alternate Name extension type. For a
list of the Cert-C supported extension types, see the API Reference.

Cert-C makes a list of extensions in an extensions object. Each extension has an index
number. C_CreateExtension’s fourth argument returns a pointer to the index of the
new extension entry in the extensions object.

Each extension has a criticality. When a particular extension’s criticality is set to
critical, the reader of the certificate must understand the extension type. If the reader
does not understand the extension type, then the reader should not accept the
certificate. The X.509 standard defines the default criticality of an extension. To accept
an extensions default criticality, you set the criticality flag to NOT_IN_USE. However,
if the extension type’s criticality was set by the C_RegisterExtensionType function,
the registered criticality is used.

To change an extensions default criticality (if the standard allows you to override it),
you set the criticality flag to CRITICAL or NON_CRITICAL. For a list of the
Cert-C-supported extension types’ default criticality, see the “Extension Types and
Structures” section of the API Reference.

In the last argument, you have the option to pass an extension handler to override the
default extension handler. In this example, because ET_ISSUER_ALTNAME is a standard
extension, you use the default handler, so you set handler to NULL_PTR. However, you
can use this argument to tell Cert-C to use a separate extension handler for only this
instance of this extension. Passing a new handler at this point does not alter the
default handler. Also, the new handler is not used for later creations of the same
extension type. To do that, you would have to register an extensions handler with the
application context using the C_RegisterExtensionType function. For an example of
how to register an extensions handler, see “Registering a User-Defined Extension” on
page 279. Alternatively, you can look at the samples/bcdemo/source/userextn.c
sample program, which adds a handler for a user-defined extension. You can also
look at the sample/cert/critical.c sample program to register a default handler.

Note: You use the extension handler to supply routines that define how to
transform an extension value from a C structure to the BER-encoded format,
and back again. Cert-C provides default handlers for the Cert-C-supported
extensions types, (ET_* identifiers). For more information on
EXTENSION_HANDLER or the extension types that Cert-C supports, see the API
Reference.

unsigned int extensionIndex;
C h a p t e r 1 5 E x t e n s i o n s 25 9

Creating an Extensions Object
Now you can add the extension value.

To add a value to the extension entry, you use the C_AddExtensionValue function.
You need to specify the index to the extension entry in the extensions object. Cert-C
returns an value index in valueIndex. This value index identifies the location where
the value was added in the list of values associated with that particular extension
entry. For more information about the C_AddExtensionValue function, see the API
Reference.

Using the C_AddExtensionValue function, you specify the extensions object, the index
to the extension entry within the extensions object, and the extension value. The
second argument, extensionIndex, is the value Cert-C returned to you when you
called C_CreateExtension. valueIndex points to the index of the new extension-entry
value in the extension-entry value list.

This function’s third argument, value, takes a POINTER type. You need to cast value to
the appropriate data structure that corresponds to the extension type. In this example,
you cast value to a ALTERNATE_NAME structure. For more information about the

status = C_CreateExtension (certFields.certExtensions, ET_ISSUER_ALTNAME,
 ET_ISSUER_ALTNAME_LEN, &extensionIndex, 0,
 (EXTENSION_HANDLER *)NULL_PTR);
if (status != 0)
 goto CLEANUP;

int C_AddExtensionValue (
 EXTENSIONS_OBJ extensionsObject,
 unsigned int index,
 POINTER value,
 unsigned int *valueIndex
);
2 6 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating an Extensions Object
ALTERNATE_NAME structure, see the API Reference.

For more information on the extension types that Cert-C supports and to
cross-reference the extension types to their corresponding Cert-C data structures, see
the API Reference.

In this example, you add a Web address through the resourceLocator field of the
ALTERNATE_NAME structure. Set ALTERNATE_NAME.altNameType to one of the possible CN_*
values. In this example, you set altNameType to CN_RESOURCE_LOCATOR. For a list of the
possible CN_* values, see the API Reference.

typedef struct ALTERNATE_NAME {
 unsigned int altNameType;
 union {
 OTHER_NAME otherName; /* OTHER_NAME structure */
 ITEM rfc822Name; /* IA5String type */
 ITEM dNSName; /* IA5String type */
 OR_ADDRESS x400Address; /* OR_ADDRESS structure */
 NAME_OBJ directoryName; /* Distinguished Name object type */
 EDI_PARTY_NAME ediPartyName; /* EDI_PARTY_NAME structure */
 ITEM resourceLocator; /* IA5String type */
 ITEM ipAddress; /* Octet-string type */
 ITEM registeredID; /* Object-identifier type */
 } altName;
} ALTERNATE_NAME;

unsigned int valueIndex;
char *webAddress = “http:\/\/www.rsa.com”;
ITEM webItem;
ALTERNATE_NAME issuerAltName;

webItem.data = (unsigned char *)webAddress;
webItem.len = T_strlen (webAddress);
issuerAltName.altNameType = CN_RESOURCE_LOCATOR;
issuerAltName.altName.resourceLocator = webItem;

status = C_AddExtensionValue (certFields.extensionsObject, extensionIndex,
 (POINTER)(&issuerAltName), &valueIndex);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 5 E x t e n s i o n s 26 1

Creating an Extensions Object
Step 3: Perform operations
In this example, you do not perform any sign or verify operations.

Step 4: Retrieve the extension information in DER format
You now have an extensions object that contains an extension entry and the extension
entry’s value; however, it is in a Cert-C format. You need to get the extension
information out of the EXTENSIONS_OBJ and into a format other applications can
recognize, such as the DER-encoded format. To get the extension information out of
the EXTENSIONS_OBJ, you use the C_GetExtensionsObjectDER function. You can also
get the DER encoding of each individual extension using the C_GetExtensionDER
function. For more information about C_GetExtensionsObjectDER and
C_GetExtensionDER functions, see the API Reference.

You pass the extensions object as the first argument. Cert-C returns addresses that
contain pointers to the DER-encoded values of all the extensions in extensionsObject.
For each extension type in the extensionsObject, the corresponding GetEncodedValue
callback in the handler is called to obtain the encoded extension value.

What the pointer to the DER encoding points to, belongs to Cert-C. You do not need
to allocate or free up that memory. Also, do not adjust that data yourself. That
information remains unchanged until you call a Cert-C routine that modifies or
destroys the extensions object. You should copy the extension information into a
database or a file.

The RSA_WriteDataToFile routine is not a Cert-C routine; it is a demo utility routine.
For more information about Cert-C demo utilities, see the “Utilities” chapter in the

int C_GetExtensionsObjectDER (
 EXTENSIONS_OBJ extensionsObject, /* Extensions object */
 unsigned char **der, /* (out) DER-encoded extension entries */
 unsigned int *derLen /* (out) Length of DER entries */
);

unsigned char *derData;
unsigned int derDataLen;

status = C_GetExtensionsObjectDER (certFields.extensionsObject, &derData,
 &derDataLen);
if (status != 0)
 goto CLEANUP;
2 6 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Creating an Extensions Object
Advanced Developer’s Guide. You can use RSA_WriteDataToFile to write binary data to
a file.

Step 5: Destroy the extensions object
At this stage, you might want to keep and reuse the extensions object. For example,
you need to use an extensions object in the examples presented in the remainder of
this chapter. However, if you no longer need the extensions object, making sure you
have saved any information you need later, then you destroy it now. This frees up any
memory allocated by Cert-C. If an object is NULL_PTR, then Cert-C does nothing.

status = RSA_WriteDataToFile (extenDer.data, extenDer.len,
 "Enter name of file to store extension
 binary");
if (status != 0)
 goto CLEANUP;

CLEANUP:
 C_DestroyExtensionsObject (&extensionsObject);
C h a p t e r 1 5 E x t e n s i o n s 26 3

Extensions Information in an Attributes Object
Extensions Information in an Attributes
Object
At some time, you may want to pass additional information (in the certificate request)
to the CA. To do this, you build an extensions object and fill it with an extension or
extensions. Then, you transfer the extensions to an attributes object. The CA gets the
attributes object as part of the certificate request and transfers the extensions from the
attributes object into an extensions object.

“Putting Extensions in an Attributes Object” on page 264 explains how to create an
attributes object that contains extensions information. This type of attribute is defined
in PKCS #9 (pkcs-9-at-extensionRequest).

“Reading Extensions in an Attributes Object” on page 267 explains how to read an
attributes object that contains extensions information.

Putting Extensions in an Attributes Object
In this example, you build an extensions and an attributes objects; then you transfer
the extension information to the attributes object. You can then use the attributes
object when you create a certificate request.

Step 1: Create an extensions and an attributes object
First, you need to create an extensions and an attributes object. You have already done
this is the “Creating an Extensions Object” on page 257 and “Creating an Attributes
Object” on page 115.

EXTENSIONS_OBJ extensionsObj = (EXTENSIONS_OBJ)NULL_PTR;
ATTRIBUTES_OBJ attributesObj = (ATTRIBUTES_OBJ)NULL_PTR;

status = C_CreateExtensionsObject (&extensionsObj, CERT_EXTENSIONS_OBJ, ctx);
if (status != 0)
 goto CLEANUP;

status = C_CreateAttributesObject (&attributesObj);
if (status != 0)
 goto CLEANUP;
2 6 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Putting Extensions in an Attributes Object
Step 2: Enter the extension information
Now that you have created an extensions object, you need to set the extensions object
with extension information. In this example, you add a key-usage extension. Recall
that to add information to an extensions object, you must create an extension and then
add the value. To add an extension entry to the extensions object, you use the
C_CreateExtension function. To add a value to the extension entry, you use the
C_AddExtensionValue function. For more information about the C_CreateExtension
and C_AddExtensionValue functions, see the API Reference.

Using the C_CreateExtension function, you specify the extensions object, the
extension type, the extension-type length, criticality, and optionally an extension
handler. extensionIndex points to the index of the new extension entry in the
extensions object.

Using the C_AddExtensionValue function, you specify the extensions object, the index
to the extension entry within the extension object, and the extension value. valueIndex
points to the index of the new extension-entry value in the extension-entry value list.

Step 3: Perform operations
In this example, you do not perform any sign or verify operations.

Step 4: Retrieve the extensions information
Now that you have a filled extensions object, you can transfer it into an attributes

unsigned int extensionIndex, valueIndex;
UINT4 keyUsage;

keyUsage = CF_KEY_ENCIPHERMENT;

status = C_CreateExtension (extensionsObj, ET_KEY_USAGE, ET_KEY_USAGE_LEN,
 &extensionIndex, 0,
 (EXTENSION_HANDLER *)NULL_PTR)) != 0)
if (status != 0)
 goto CLEANUP;

status = C_AddExtensionValue (extensionsObj, extensionIndex,
 (POINTER)&keyUsage, &valueIndex);
if (status != 0)
 goto CLEANUP;
C h a p t e r 1 5 E x t e n s i o n s 26 5

Putting Extensions in an Attributes Object
object. To do this, you use the C_GetAttributeInExtensionsObj function. For more
information about C_GetAttributeInExtensionsObj, see the API Reference.

You pass the extensions and attributes objects to the
C_GetAttributeInExtensionsObj function. Cert-C transfers the extension
information into the attributes object.

Now you can create a certificate request using a PKCS10_FIELDS structure that
contains the attributes object you just created. The PKCS10_FIELDS.attribute field is
set to this attributes object. For more information about creating a certificate request,
see “Creating a PKCS #10 Certificate Request” on page 123.

You can also get the extension information in a couple of other ways. You can get the
DER encoding of the extensions object using the C_GetExtensionsObjectDER function.
Or, you can get the DER encoding of the attributes object using the
C_GetAttributesDER function. For more information about these functions, see the
API Reference.

You can build as many extensions as you want; you only need one extensions object
and one attributes object. You can also put user-defined attributes into the same
attributes object. For example, in “Creating an Attributes Object” on page 115 you
added the attribute Employee Number. If you also added Key Usage, then you can
use the same attributes object. So you have one attributes object that contains two
attributes, one of which is an X.509 v3 extension.

You can also get the DER encoding of the extensions from an attributes object using
the C_GetAttributeValueDER function and the type AT_X509_V3.

Step 5: Destroy the extensions and attributes objects
Any object you create you must destroy, making sure you have saved any
information you need later. This frees up any memory allocated by Cert-C. If an object
is NULL_PTR, then Cert-C does nothing. That is why you should always initialize all

int C_GetAttributeInExtensionsObj (
 EXTENSIONS_OBJ extensionsObject, /* (in) Extensions object */
 ATTRIBUTES_OBJ attributesObject /* (in/out) Attributes object */
);

status = C_GetAttributeInExtensionsObj (extensionsObj, attributesObj);
if (status != 0)
 goto CLEANUP;
2 6 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Reading Extensions in an Attributes Object
objects to NULL_PTR and call the C_Destroy* function later. If there is an error before
creating an object, then the C_Destroy* function does not do any damage.

Reading Extensions in an Attributes Object
There are two ways to read extensions in an attributes object. The first way is to get
the BER encoding of an attributes object. You build an attributes and an extensions
object. Then you set the attributes object with the BER encoding of the attributes
object. After, you call the C_GetExtensionsInAttributesObj function. This function
transfers the extension information from the attributes object to the extensions object.
This is the reverse of what you did in the example, “Putting Extensions in an
Attributes Object” on page 264.

The second way to read extensions in an attributes object is to read a certificate
request. For example, as a CA, you can receive a certificate request that contains an
attribute with extension information. In the example, “Fulfilling the PKCS #10
Certificate Request” on page 174, you created a PKCS10_OBJ and CERT_OBJ. You called
the C_GetCertFields function to look at the CERT_OBJ’s CERT_FIELDS information and
you set the CERT_FIELDS’s fields with the PKCS #10 request information. At that point
you had a created, but unset, extensions object, CERT_FIELDS.certExtensions.

In this example, you continue from the end of “Step 3c: Fill the certificate object’s
CERT_FIELDS structure” on page 177. You copy information from an attributes object
to the extensions object and then read the extensions object.

Step 1: Create an attributes and an extensions object
In the example, “Fulfilling the PKCS #10 Certificate Request” on page 174, when you
called the C_GetCertFields function you created an extensions object. This function
retrieved the certificate object’s CERT_FIELDS structure, which gave you access to the
extensions object through CERT_FIELDS.certExtensions.

Instead of creating an attributes object, you retrieve it from the PKCS #10 certificate
request. Using the C_GetPKCS10Fields function, you create and fill a PKCS10_FIELDS
structure. For more information about the C_GetPKCS10Fields function and the

CLEANUP:
 C_DestroyExtensionsObject (&extensionsObj);
 C_DestroyAttributesObject (&attributesObj);
C h a p t e r 1 5 E x t e n s i o n s 26 7

Reading Extensions in an Attributes Object
PKCS10_FIELDS structure, see the API Reference.

The PKCS10_FIELDS structure contains the attributes object in its attribute field.

Step 2: Copy the attributes-object information into the extensions
object and read the extensions-object information
In this step, you copy the information in the attributes object into the extensions
object; then you read the extensions-object information.

Step 2a: Enter the extensions information
You need to copy the information in the attributes object into the extensions object.
You can do this by calling the C_GetExtensionsInAttributesObj function.

You pass both the attributes and extensions object to the
C_GetExtensionsInAttributesObj function. Cert-C copies the information in
pkcs10Fields.attributes to the extensions object. Assume that
pkcs10Fields.attributes is an ATTRIBUTES_OBJ that contains an extensions attribute
and that newCertInfo.certExtensions is an EXTENSIONS_OBJ, which has already been

typedef struct PKCS10_FIELDS {
 UINT2 version;
 NAME_OBJ subjectName;
 ITEM publicKey;
 ATTRIBUTES_OBJ attribute;
 POINTER reserved;
} PKCS10_FIELDS;

PKCS10_FIELDS pkcs10Fields;

status = C_GetPKCS10Fields (pkcs10Obj, &pkcs10Fields);
if (status != 0)
 goto CLEANUP;

int C_GetExtensionsInAttributesObj (
 EXTENSIONS_OBJ extensionsObject, /* (in/out) Extensions object */
 ATTRIBUTES_OBJ attributesObject /* (in) Attributes object */
);
2 6 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Reading Extensions in an Attributes Object
created.

Now you can read the extensions object.

Step 2b: Read the extensions object

First you need to find out how many extensions there are in the extensions object. You
can do this using the C_GetExtensionCount function. Then you can call either the
C_GetExtensionTypeByIndex or the C_GetExtensionInfo function. Finally, you call
the C_GetExtensionValue function to get the actual extension information.

See the example, “Retrieving Extensions-Object Information” on page 223, for a more
detailed description on how to retrieve extension information.

Step 3: Perform operations
In this example, you do not perform any sign or verify operations.

Step 4: Destroy all objects
Any object you create you must destroy, making sure you have saved any
information you will need later. This frees up any memory allocated by Cert-C. If an
object is NULL_PTR, then Cert-C does nothing. That is why you should always initialize
all objects to NULL_PTR and call the C_Destroy* function later. If there is an error
before creating an object, then the C_Destroy* function does not do any damage.

status = C_GetExtensionsInAttributesObj (newCertInfo.certExtensions,
 pkcs10Fields.attribute);
if (status != 0)
 goto CLEANUP;

CLEANUP:
 C_DestroyExtensionsObject (&extensionsObj);
 C_DestroyAttributesObject (&attributesObj);
C h a p t e r 1 5 E x t e n s i o n s 26 9

User-Defined Extensions
User-Defined Extensions
With standard X.509 v3 extensions, it is relatively simple to create an extension and
add it to a certificate. Cert-C knows how to handle the standard extensions. However,
you might want to add information to a certificate that is not supported by the X.509
v3 standard.

In the example, “Creating an Attributes Object” on page 115, you created an attributes
object to hold the employee number information. Since employee number is not a
standard X.509 attribute, you used the attributes object. But the information was not
part of the actual certificate.

There is a way to place non-standard information into a certificate. You can create a
user-defined extension. This can be included in the actual certificate.

With the standard extensions, you can create an extension by giving Cert-C the
extension’s type. Cert-C looks at the type (for example, ET_ISSUER_ALTNAME), sees that
it is something it recognizes, and knows how to handle the value. However, if you
pass Cert-C an extension it does not recognize, then Cert-C does not know how to
handle the value you passed. Therefore, you must tell Cert-C how to handle the input
data, and you do this by building an extension handler.

Cert-C provides a default extension handler for each Cert-C-defined extension type;
however, if you override a default extension handler or if you define a new extension
type, you must provide the callback functions. The EXTENSION_HANDLER data structure
contains pointers to callback functions for a particular extension type. For more
information about EXTENSION_HANDLER, see the API Reference.

typedef struct EXTENSION_HANDLER {
 /* Allocate and add new value to the value list */
 int (*AllocAndCopy) (
 POINTER *newValue, /* (out) New copy of value */
 POINTER value /* Value to be copied */
);
2 7 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

User-Defined Extensions
The following table lists the four callback functions that you must provide for each
extension type, and the Cert-C functions that call each callback function:

To override only one callback in a handler, use the C_GetExtensionTypeInfo function
to get a copy of the default handler. Overwrite the target callback; then call the
C_RegisterExtensionType function to override the default handler.

The four callback functions that you provide help Cert-C to execute the five-step
process of building or reading an object. For more information about the five-step
process for building an object, see “Producing Information” on page 64. For more
information about the five-step process for reading an object, see “Reading
Information” on page 64.

Look at the five steps in building an object, when you use an extension handler.

 /* Delete value allocated by AllocAndCopy by freeing its storage */
 VALUE_DESTRUCTOR Destructor;
 /* Get value in encoded format */
 int (*GetEncodedValue) (
 LIST_OBJ valueList, /* Values to be encoded */
 unsigned char **der, /* (out) Encoded values */
 unsigned int *derLen /* (out) Length of encoded values */
);

 /* Decode the encoded value into components and save */
 int (*SetEncodedValue) (
 LIST_OBJ valueList, /* Decoded value(s) */
 unsigned char *ber, /* BER value(s) to be decoded */
 unsigned int berLen, /* Length of BER to be decoded */
 LIST_OBJ_ENTRY_HANDLER *listEntryHandler /* List entry handler */
);
} EXTENSION_HANDLER;

Table 15-1 Cert-C Functions that Call the Extension-Handler Callback Functions

Callback Function Cert-C Functions that Call the Callback

AllocAndCopy C_AddExtensionValue

Destructor C_DeleteExtensionValue

GetEncodedValue C_GetEncodedExtensionValue

SetEncodedValue C_SetEncodedExtensionValue

C_SetExtensionsObjectBER

C_SetExtensionBER
C h a p t e r 1 5 E x t e n s i o n s 27 1

Building an Extension Handler
1. Create an object—at this point Cert-C is not dealing with the actual data yet, so it
does not need any help yet.

2. Enter the information—in this case it is the extension value. Since the information
you enter is something Cert-C does not recognize, it needs help, so you provide
AllocAndCopy.

3. Perform the operation—but you do not sign an extensions object, so no help is
needed.

4. Retrieve the information in DER format—but with the user-defined extension,
Cert-C does not know how to DER encode the value. You need to provide
GetEncodedValue. Cert-C does know how to DER-encode the rest of the
information such as the extension type, the criticality, and where to put
identifying bytes.

5. Destroy the object—Cert-C needs to destroy all the information in the object and
then the object itself. You tell Cert-C how to destroy the extension value with
Destructor. Cert-C can destroy the rest of the object.

Look at the five steps in reading an object, when you use an extension handler.

1. Create an object—once again, Cert-C does not need any help in creating the
object.

2. Set the object with the information in BER format—because Cert-C does not know
the way to BER encode the value of your extension, you need to provide
SetEncodedValue.

3. Read the information—Cert-C simply returns a pointer to the beginning of the
value. It can do that without knowing what the value is or how it is formatted, so
it does not need help with this task.

4. Perform the operation—but there is no signature to verify, so no help is needed.
5. Destroy the object—Cert-C needs to destroy all the information in the object and

then the object itself. You tell Cert-C how to destroy the extension value with
Destructor. Cert-C can destroy the rest of the object.

Building an Extension Handler
To build an extension handler, you need to write the four extension handler routines;
AllocAndCopy, Destructor, GetEncodedValue, and SetEncodedValue. In this example,
you write the four routines for an employee-number extension type.

First you need to define the form of an employee number. For examples of what an
extension-type form looks like, see the AUTHORITY_KEY_ID or KEY_USAGE data type in
2 7 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Writing the AllocAndCopy Routine
the API Reference. In this example, the employee number will be defined as follows:

The empNumber value is the actual employee number. The acctngCode value is an
accounting code for bookkeeping purposes.

Writing the AllocAndCopy Routine
When you enter an employee number and accounting code, Cert-C will want to copy
that information and place it into an extensions object. You need to write an
AllocAndCopy routine so that Cert-C can do this. The following example code shows
how you can write an AllocAndCopy routine for an employee number. The T_malloc
T_memset, T_memcopy, and T_free functions are Cert-C System service provider
functions. For more information about these functions, see the “Service Provider”
section of the API Reference.

Using T_malloc, you allocate a block of memory, the size of EMPLOYEE_NUMBER, to
newData. Using T_memset, you set newData; the first sizeof bytes of newData are set to 0.

You set source to data and destination to newData. Both source and destination now
point to two different EMPLOYEE_NUMBER structures. You allocate a block of memory,
the size of source.empNumber, to destination.empNumber.

You set destination.empNumberLen to the same length as source.empNumberLen. Then
you copy the first source.empNumberLen bytes of source.empNumber to
destination.empNumber.

Finally, you do the same for the accounting code, acctngCode, as you did for the
employee number, empNumber. If an error occurs, the T_free function frees the
destination block of memory and sets newData to NULL_PTR.

typedef struct {
 unsigned char *empNumber;
 unsigned int empNumberLen;
 unsigned char *acctngCode;
 unsigned int acctngCodeLen;
} EMPLOYEE_NUMBER;

int EmpNumAllocAndCopy (POINTER *newData, POINTER data)
{

C h a p t e r 1 5 E x t e n s i o n s 27 3

Writing the AllocAndCopy Routine
 int status = 0;
 EMPLOYEE_NUMBER *source, *destination;

 *newData = T_malloc (sizeof (EMPLOYEE_NUMBER));
 if (*newData == NULL_PTR)
 return (E_ALLOC);
 T_memset (*newData, 0, sizeof (EMPLOYEE_NUMBER));

 source = (EMPLOYEE_NUMBER *)data;
 destination = (EMPLOYEE_NUMBER *)(*newData);

 do {
 destination->empNumber =
 T_malloc (source->empNumberLen);
 if (destination->empNumber == NULL_PTR) {
 status = E_ALLOC;
 break;
 }
 destination->empNumberLen = source->empNumberLen;
 T_memcpy (destination->empNumber, source->empNumber,
 source->empNumberLen);

 destination->acctngCode =
 T_malloc (source->acctngCodeLen);
 if (destination->acctngCode == NULL_PTR) {
 status = E_ALLOC;
 break;
 }
 destination->acctngCodeLen = source->acctngCodeLen;
 T_memcpy (destination->acctngCode, source->acctngCode,
 source->acctngCodeLen);
 } while (0);

 if (status !=0) {
 T_free (destination->empNumber);
 T_free (destination->acctngCode);
 T_free (*newData);
 *newData = NULL_PTR;
 }

 return (status);
}

2 7 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Writing the Destructor Routine
Writing the Destructor Routine
You also need to tell Cert-C how to destroy the EMPLOYEE_NUMBER user-defined
extension information. To do this, you need to write a Destructor routine; the
following example code shows how. The T_free function is a Cert-C System
service-provider function. For more information about this function, see the “Service
Provider” section of the API Reference.

Writing the GetEncodedValue Routine
Cert-C is able to get the user-defined extension information in encoded form, except
for the actual value. You need to write a GetEncodedValue routine to tell Cert-C how
to encode the value.

RFC 2459, contains the following ASN.1 definition for each extension in an extensions
object:

The output of the GetEncodedValue routine is placed into the contents of the
extnValue OCTET STRING. In this example, you are not DER encoding any data for the
user-defined Employee Number extension, so that raw data appears in the OCTET
STRING. Otherwise, if you needed to place a more complicated DER-encoded value in
the extnValue OCTET STRING, your implementation of GetEncodedValue must
construct that DER-encoded value.

In this example, it is not necessary to define the type or the type length, or to
determine how to DER or BER encode anything. All you need to do is put the value—
the user-defined extension information in the EMPLOYEE_NUMBER structure—into a

void EmpNumDestructor (POINTER data)
{
 T_free (((EMPLOYEE_NUMBER *)data)->empNumber);
 T_free (((EMPLOYEE_NUMBER *)data)->acctngCode);
 T_free (data);
 return;
}

Extension ::= SEQUENCE {
 extnId EXTENSION.&id ({ExtensionSet}),
 critical BOOLEAN DEFAULT FALSE,
 extnValue OCTET STRING }
 -- contains a DER encoding of a value of type
 -- &ExtnType for the
 -- extension object identified by extnId --
C h a p t e r 1 5 E x t e n s i o n s 27 5

Writing the GetEncodedValue Routine
series of bytes.

Later, you take this series of bytes and put it back into the regular format. In this
example, you put the employee number into the following series of bytes.

The values are defined as follows:

To use the GetEncodedValue routine, the extension value must be in a LIST_OBJ.
Cert-C builds this LIST_OBJ using the AllocAndCopy routine that you wrote for this
extension handler and sets it using the SetEncodedValue routine, which you also
write.

First, you get the extension value to be encoded using the C_GetListObjectEntry
function. Since the employee-number type in this example takes only a single value,
the index into the LIST_OBJ is 0 (zero). If the extension type takes multiple values, you
need to devise a scheme that encodes them all. GetEncodedValue calls the
C_GetListObjectCount and C_GetListObjectEntry functions to extract the extension
value(s) to be encoded from the valueList.

Next, you allocate the space needed to store the encoded value. Using the
GetEncodedValue routine, you calculate the length of the employee number and the
accounting code and store the length in derLen. T_malloc then allocates a block of
memory to store the encoded value and saves a pointer to this block in der. Cert-C
frees up this space later, using the T_free function, so you must use the T_malloc
function to allocate the space.

Finally, you copy the values into the A||B||C||D format using the T_memcpy

A||B||C||D (where || means ‘concatenate’)

Table 15-2 A||B||C||D Format

Format Size Variable Name Value

A 2 bytes empNumberLen The length of the employee number.

B empNumberLen bytes empNumber The employee number.

C 2 bytes acctngCodeLen The length of the accounting code.

D acctngCodeLen bytes acctngCode The accounting code.
2 7 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Writing the SetEncodedValue Routine
routine.

Writing the SetEncodedValue Routine
Cert-C does not know how to convert the extension type’s encoded OCTET STRING
back into an EMPLOYEE_NUMBER structure again. (SetEncodedValue’s ber input

int EmpNumGetEncodedValue
 (LIST_OBJ valueList, unsigned char **der, unsigned int derLen)
{

 int status;
 UNIT2 temp2Bytes;
 unsigned int position;
 EMPLOYEE_NUMBER *value;

 /* Since the employee-number type takes only a single value, we know the
 index into the list object is 0.
 */
 if ((status = C_GetListObjectEntry
 (valueList, 0, (POINTER *)(&value))) !=0)
 return (status);

 /* The value is in the EMPLOYEE_NUMBER format; now you place it into
 the A||B||C||D format.
 */
 *derLen = value->empNumberLen +
 value ->acctngCodeLen + 4;
 *der = T_mallac (*derLen);
 if (*der == NULL_PTR)
 return (E_ALLOC);

 temp2Bytes = (UNIT2)(value->empNumberLen);
 T_memcpy ((*der), (unsigned char *)&temp2Bytes, 2);
 T_memcpy ((*der) +2, value->empNumber, value->empNumberLen);
 position = value->empNumberLen + 2;

 temp2Bytes = (UNIT2)(value->acctngCodeLen);
 T_memcpy ((*der) + position, (unsigned char *)&temp2Bytes, 2);
 T_memcpy ((*der) + position + 2, value->acctngCode,
 value->acctngCodeLen);

 return (0);
}

C h a p t e r 1 5 E x t e n s i o n s 27 7

Writing the SetEncodedValue Routine
parameter contains the value octets of this extension’s OCTET STRING.) You need to
write a SetEncodedValue routine to tell Cert-C how to put the encoded data into the
proper form. You do not copy the data from the encoded series of bytes into an
EMPLOYEE_NUMBER structure. Instead, you simply set the addresses in the
EMPLOYEE_NUMBER structure to those positions in the encoded series of bytes. You can
copy the lengths and add the value in EMPLOYEE_NUMBER form to the LIST_OBJ, which
your AllocAndCopy routine created. You do this by calling the C_AddListObjectEntry
function. Cert-C also passes the proper list-object handler to use. Cert-C builds it from
the AllocAndCopy and Destructor routines in this extension handler. At this point,
Cert-C copies the data and places it into the extensions object.

Now that you have an extension handler for EMPLOYEE_NUMBER; you can register the
EMPLOYEE_NUMBER extension type.

int EmpNumSetEncodedValue
 (LIST_OBJ valueList, unsigned char *ber, unsigned int berLen,
 LIST_OBJ_ENTRY_HANDLER *listEntryHandler)
{

 int status;
 UNIT2 numLen, codeLen;
 unsigned int position;
 EMPLOYEE_NUMBER employeeNumber;

 T_memcpy ((unsigned char *)&numLen, ber, 2);
 employeeNumber.empNumberLen = (unsigned int)numLen;
 employeeNumber.empNumber = ber + 2;
 position = (unsigned int)(numLen + 2);

 T_memcpy ((unsigned char *)&codeLen, ber + position, 2);
 employeeNumber.acctngCodeLen = (unsigned int)codeLen;
 employeeNumber.acctngCode = ber + position + 2;

 status = C_AddListObjectEntry
 (valueList, (POINTER)(&employeeNumber), (unsigned int *(NULL_PTR),
 listEntryHandler);

 return (status);
}

2 7 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Registering a User-Defined Extension
Registering a User-Defined Extension
When you define an extension, you register the extension handler with a Cert-C
context. Then, whenever you create an object, you pass this context so that Cert-C can
handle that particular extension type when it appears later.

Building a Cert-C Context to Register a User-Defined Extension
To build a Cert-C context, you initialize and register the extension type. For more
information about initializing a Cert-C context, see the example, “Initializing the
Cert-C Context” on page 75. You are not required to register any special service
providers to get the extension handlers; they are there by default.

Within a Cert-C context, you need to register each new extension type. You are going
to add an extension by type and value. When you tell Cert-C what the type is, it will
also need to know how to handle the value. Cert-C already recognizes the standard
types and knows how to handle the values. Cert-C, however, does not recognize your
type unless you register it and describe how to handle it.

Registering a User-Defined Extension
You can register as many extension types with a Cert-C context as you want. In this
example, you only register one, the employee-number extension type. To register an
extension type, you use the C_RegisterExtensionType function.

To register an extension type, you also use the EXTENSION_TYPE_INFO structure. All the
extension-type information is passed to the Cert-C context through this structure. type
specifies the type of extension you are registering and handler specifies the extension
type’s extension handler. You must initialize this structure when you register the

int C_RegisterExtensionType (
 CERTC_CTX ctx, /* Cert-C context */
 EXTENSION_TYPE_INFO *info /* Extension definition */
);
C h a p t e r 1 5 E x t e n s i o n s 27 9

Registering a User-Defined Extension
extension type.

In this example, using the C_RegisterExtensionType function, you register the
EMPLOYEE_NUMBER extension type. The first argument is the Cert-C context that you
just initialized. The second argument passes all the user-defined extension
information that describes the new extension type you are registering.

The first field of the EXTENSION_TYPE_INFO structure is an OID. The X.509 standard
defines some OID types. For example, the OID for issuerAltName is the 3-byte
sequence {0x55, 0x1D, 0x08}. You can set this OID to be whatever you want. It is
advisable to make it several bytes to guarantee you avoid collision with the standard
one. In this example, you set the OID to “Employee Number”. That would be the byte
sequence {0x45, 0x6D, 0x70, ...}.

The criticality field decides whether the certificate reader should accept or not
accept the certificate, if they do not recognize the extension type and value. In this
example, you set criticality to NON_CRITICAL.

The overrideCriticality field allows you to override the criticality field, or to make
sure that the criticality field never gets changed. To allow future overrides, you set
this field to ALLOW_OVERRIDE_CRITICALITY. To disallow future overrides, you set this
field to 0 (zero). In this example, you set overrideCriticality to 0 (zero).

The overrideHandler field allows you to specify an extension handler to override the
default-extension handler in handler. At some time you might want to create an
override-extension handler for this extension type. In that case, you would set this
field to ALLOW_OVERRIDE_HANDLER. However, if you want this extension type’s
extension handler to be the only extension handler for this type, then set this field to 0
(zero). In this example, you set overrideHandler to 0 (zero).

The authenObjects field specifies the type of objects allowed with this extension type.

typedef struct EXTENSION_TYPE_INFO{
 ITEM type; /* Extension's OID */
 unsigned int criticality; /* Extension's criticality */
 unsigned int overrideCriticality; /* Allow override criticality */
 unsigned int overrideHandler; /* Allow override handler */
 UINT2 authenObjects; /* Objects that can include */
 /* this extension */
 unsigned int uniqueValue; /* If non-zero, extension */
 /* can have only one value */
 /* if 0, can have multiple values */
 EXTENSION_HANDLER handler; /* Extension's handler */
} EXTENSION_TYPE_INFO;
2 8 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Using a User-Defined Extension
For a list of the object types you can set this field to, see the API Reference. In this
example, you set this field to CERT_EXTENSIONS_OBJ.

The uniqueValue field specifies whether this extension type can have multiple values
or not. For example, the type ET_ISSUER_ALTNAME can have multiple values. One can
be the e-mail address, another a resource locator. In this example, you set this flag to
1. For multiple values, set this flag to another non-zero number.

Finally, you set handler to the new extension handler that you just created.

Using a User-Defined Extension
Now that you have defined a user-defined extension type, written its extension
handler, and initialized and registered it, you need to pass this Cert-C context when
you create an object. For example, to use the user-defined extension when you create a
certificate object, you do the following:

EXTENSION_HANDLER empNumExtensionHandler;
empNumExtensionHandler.AllocAndCopy = EmpNumAllocAndCopy;
empNumExtensionHandler.Destructor = EmpNumDestructor;
empNumExtensionHandler.GetEncodedValue = EmpNumGetEncodedValue;
empNumExtensionHandler.SetEncodedValue = EmpNumSetEncodedValue;

char *empNumType = “Employee Number”;
EXTENSION_TYPE_INFO empNumInfo;

empNumInfo.type.data = (unsigned char *)empNumType;
empNumInfo.type.len = T_strlen (empNumType);
empNumInfo.criticality = NON_CRITICAL;
empNumInfo.overrideCriticality = 0;
empNumInfo.authenObjects = CERT_EXTENSIONS_OBJ;
empNumInfo.uniqueValue = 1;
empNumInfo.handler = empNumExtensionHandler;

status = C_RegisterExtensionType (ctx, &empNumInfo)
if (status != 0)
 goto CLEANUP;

CERT_OBJ newCertObj = (CERT_OBJ)NULL_PTR;

if ((status = C_CreateCertObject (&newCertObj, ctx)) != 0)
 break;
C h a p t e r 1 5 E x t e n s i o n s 28 1

Using a User-Defined Extension
Now whenever Cert-C sees the type “Employee Number”, it knows what to do. For
example, if you call the C_CreateExtension or C_AddExtensionValue functions with
this type and a value in the form of an EMPLOYEE_NUMBER structure, Cert-C can perform
these functions.

In Cert-C, whenever you create an object, you must also destroy it once it is no longer
being used. As with objects, whenever you initialize a Cert-C context you must also
finalize it when you no longer need it.

void C_FinalizeCertC (CERTC_CTX *ctx);
2 8 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

The Unknown Extension
The Unknown Extension
It is possible that you could receive a certificate or CRL with an unknown extension.
Cert-C is able to report the extension type and criticality and it can access the value.
However, you must pass the proper data structure, into which Cert-C can format the
value. Cert-C must know in advance how to properly format the value into that
passed data structure. If the extension is a standard type, Cert-C uses a built-in
handler. If this is a user-defined type, Cert-C uses the handler passed in through the
application context. An unknown extension is an extension that is neither a registered
(pre-defined) extension, nor a user-defined extension. If Cert-C does not have a
handler for a particular type extension type, an unknown extension type, it saves the
extension’s value in an ITEM structure.

You call C_GetExtensionCount to find out how many extensions there are in the
object. Then with a for-loop, you call C_GetExtensionInfo on each of the extensions.
You now know the type of each extension, so you can call C_GetExtensionValue with
the proper data structure for the value. You would do this in some sort of switch
statement. For example, for ET_ISSUER_ALTNAME, use the ALTERNATE_NAME structure;
for ET_REASON_CODE, use unsigned int, and so on.

If your application did not recognize the extension type, you still call the
C_GetExtensionValue. The data structure you pass for the value is an ITEM. Cert-C
uses the default handler that takes values and simply returns a pointer to the
sequence of bytes in the encoding and the length.

The Unknown Critical Extension
When Cert-C encounters a certificate with a critical extension that is unknown to
Cert-C, the function that attempted to parse the certificate returns the
E_UNKNOWN_CRITICAL_EXTENSION error code. This is because you do not have an
extension handler defined in the Cert-C context for that type of extension.

For Cert-C to be able to parse this extension, you must add a user-defined extension
handler, which implements the callbacks to create and parse this extension value, to
the Cert-C context.

Cert-C has a default handler that is used to handle unknown non-critical extensions.
Unlike the other extension handlers, the default handler simply translates from BER
to an ITEM structure or from an ITEM structure to DER. (The other extension handlers
translate from BER to a C structure specific to the type of information contained in the
extension value.)
C h a p t e r 1 5 E x t e n s i o n s 28 3

The Unknown Critical Extension
In this example, you receive an unknown critical extension called
ET_SOME_ARBITRARY_EXTENSION.

You register an extension handler for the unknown critical extension,
ET_SOME_ARBITRARY_EXTENSION, using the default-extension handler’s routines.
Assume that you have a properly initialized Cert-C context, CERTC_CTX ctx.

You call the C_GetExtensionTypeInfo function and pass the ET_UNKNOWN_TYPE object
identifier as the extension type, and ET_UNKNOWN_TYPE_LEN as the length of the object
identifier.

You set an EXTENSION_TYPE_INFO structure with the new extension-type information,
which you are about to register. Set type.data to the unknown extension type
ET_SOME_ARBITRARY_EXTENSION and type.len to ET_SOME_ARBITRARY_EXTENSION_LEN. Next
you set the criticality flag to NON_CRITICAL.

Note: The reason you set the criticality of this unknown extension type to
NON_CRITICAL is because you might receive another certificate with this same
extension type; however, it might be set as non-critical. Setting it as
non-critical now enables Cert-C to parse this extension when it is critical and
also when it is non-critical. Otherwise, you application might receive a
E_INVALID_CRITICALITY error code.

Using the C_RegisterExtensionType function, you register the unknown extension
type. The second argument, extTypeInfo, passes all the user-defined extension
information that describes the new extension type you are registering.

/* The OID indicating the extension type */
unsigned char ET_SOME_ARBITRARY_EXTENSION[] = {0xab, 0xcd, 0xef};
unsigned int ET_SOME_ARBITRARY_EXTENSION_LEN = sizeof
 (ET_SOME_ARBITRARY_EXTENSION);

EXTENSION_TYPE_INFO extTypeInfo;

status = C_GetExtensionTypeInfo (ctx, ET_UNKNOWN_TYPE, ET_UNKNOWN_TYPE_LEN,
&extTypeInfo);
if (status != 0)
 goto CLEANUP;

extTypeInfo.type.data = ET_SOME_ARBITRARY_EXTENSION;
extTypeInfo.type.len = ET_SOME_ARBITRARY_EXTENSION_LEN;
extTypeInfo.criticality = NON_CRITICAL;
2 8 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Overriding the Extension Handler
Overriding the Extension Handler
You can override any default or user-defined extension handler. For example, you
would override an extension handler when you do not want to DER encode
information. Instead, you might want to use your own encoding scheme. To override
the extension handler, you register the new extension handler with the application
context. You can also override a handler when you call the C_CreateExtension
function. The default handler is replaced only for that extension.

You can also call a default extension handler and replace only one or two components
of that handler. To do this, you call the C_GetExtensionTypeInfo function and replace
the specified components.

There is one exception. When you register a user-defined extension, you have the
option of setting a flag that disallows overriding the handler. If you try to override
such an extension, it will be unsuccessful.

For an example, see the samples/cert/saltname.c sample program. This sample
overrides the default handles for the subject alternative name extension.

status = C_RegisterExtensionType (ctx, &extTypeInfo);
C h a p t e r 1 5 E x t e n s i o n s 28 5

2 8 6

Appendix A

Using BSAFE Crypto-C
Crypto-C Model
Whatever you do in Crypto-C, you do from an object. To manipulate Crypto-C
objects, you generally follow a six-step process.

1. Create
2. Set
3. Initialize
4. Update
5. Final
6. Destroy

In the Crypto-C API Reference you can find the functions corresponding to the six steps.
For instance, to create, call a B_Create routine—either B_CreateAlgorithmObject or
B_CreateKeyObject. To set, call a B_Set routine. To initialize, you call a B_*Init,
where the * indicates the function you want to perform. For example, to generate a
key pair, you would call B_GenerateInit; for random algorithms, it is B_RandomInit.
The last three steps are similar.

During the set routine, you will enter an Algorithm Info type (AI) or Key Info type
(KI) and special information (if any) the AI or KI needs. An AI or KI is simply the
description of what function the Crypto-C object is to perform. A list of AIs and KIs
are in the Crypto-C API Reference, along with the special information required.
28 7

Crypto-C Model
During the initialize routine, you need to pass an algorithm chooser. A chooser is a
way for Crypto-C to know which code to link into the executable. This enables you to
link in only the Crypto-C functionality you want, ignore the rest, and consequently
keep code size down.

For a more comprehensive description of using Crypto-C, see the Crypto-C Developer’s
Guide. For now, the following sections give code examples for some of the Crypto-C
functions you will need to use Cert-C.
2 8 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Key Object
Key Object
Cert-C uses the Crypto-C key object, B_KEY_OBJ, to store and retrieve key information
necessary to generate a certificate request. The certificate binds a name to a public key.
You have already created the name (see“Creating a Name Object” on page 105), all
you need now is the public key.

Use Crypto-C to generate an RSA public/private key pair. Then get the public key,
using B_GetKeyInfo with the key information type KI_RSAPublicBER, and place the
result into an ITEM structure. A more comprehensive description on how to use
Crypto-C is in the Crypto-C Developer’s Guide.

You pass the address of a pointer to Crypto-C, which then places at that address a
pointer. If you go to where that pointer points, you will find an ITEM that contains the
BER encoding of the public key. That ITEM contains a pointer to memory owned by
Crypto-C; you will not need to allocate or free this memory. When you destroy or
modify the Crypto-C key object, the information will disappear. As long as the key
object remains intact, you will be able to see the information. If you want to destroy
the key object, save the information first in a file or in your own buffer.

ITEM *bsafePublicKeyBER;

status = B_GetKeyInfo ((POINTER *)&bsafePublicKeyBER, publicKey,
 KI_RSAPublicBER);
if (status != 0)
 goto CLEANUP;
A p p e n d i x A U s i n g B S A F E C r y p t o - C 28 9

Generating an RSA Key Pair
Generating an RSA Key Pair
To generate an RSA key pair, you use a variation on the six-step process. There is no
Update call. For more information about generating an RSA key pair, see the Crypto-C
Developer’s Guide or the samples/keypair/keypair.c sample program.

Step 1: Create
You build two key objects using an algorithm object. Therefore, there are three objects
to create.

Step 2: Set
You need to set the algorithm object to AI_RSAKeyGen. You also need to pass some
special information; the key size (measured in modulus bits) and the public exponent.
This special information must be in the form of the following structure.

Most applications us F4 = 65537 = 0x 01 00 01 as the public exponent. RSA Security
recommends using a key size of at least 768 bits.

You do not need to set the key objects; that is what the key-pair generating object

B_ALGORITHM_OBJ rsaKeyPairGenerator =(B_ALGORITHM_OBJ)NULL_PTR;
B_KEY_OBJ publicKey = (B_KEY_OBJ)NULL_PTR;
B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

status = B_CreateAlgorithmObject (&rsaKeyPairGenerator);
if (status != 0)
 goto CLEANUP;

status = B_CreateKeyObject (&publicKey);
if (status != 0)
 goto CLEANUP;

status = B_CreateKeyObject (&privateKey);
if (status != 0)
 goto CLEANUP;

typedef struct {
 unsigned int modulusBits;
 ITEM publicExponent;
} A_RSA_KEY_GEN_PARAMS;
2 9 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Generating an RSA Key Pair
does.

Step 3: Init
You need an algorithm chooser containing the AM_RSA_KEY_GEN algorithm method.
Also, at this point, Crypto-C is still ignoring the surrender context.

Step 4: Update
There is no step 4 in generating an RSA key pair.

Step 5: Generate
In this function Crypto-C sets the key objects with proper RSA keys. To do this,
Crypto-C needs a random algorithm object. Follow steps 1 through 4, described in the
previous section, to build a random object.

A_RSA_KEY_GEN_PARAMS keyGenParams;

unsigned char f4Data[3] = {
 0x01, 0x00, 0x01
}

keyGenParams.modulusBits = 1024;
keyGenParams.publicExponent.data = f4Data;
keyGenParams.publicExponent.len = 3;

status = B_SetAlgorithmInfo (rsaKeyPairGenerator, AI_RSAKeyGen,
 (POINTER)&keyGenParams);
if (status != 0)
 goto CLEANUP;

B_ALGORITHM_METHOD *RSA_KEY_GEN_CHOOSER[] = {
 &AM_RSA_KEY_GEN,
 (B_ALGORITHM_METHOD *)NULL_PTR
};

status = B_GenerateInit (rsaKeyPairGenerator, RSA_KEY_GEN_CHOOSER,
 (A_SURRENDER_CTX *)NULL_PTR);
if (status != 0)
 goto CLEANUP;
A p p e n d i x A U s i n g B S A F E C r y p t o - C 29 1

Generating an RSA Key Pair
This is a very time-consuming operation; at this point, you may find a surrender
context useful. It is not required, so you may pass a properly cast NULL_PTR as well,
and Crypto-C will never surrender control.

Since B_GenerateKeypair requires a random-algorithm object, be sure that an
instance of a Cert-C Default Cryptographic service provider has been registered with
the Cert-C context, then call C_GetRandomObject to get a reference to the random
algorithm object in the given CERTC_CTX.

Step 6: Destroy
Do not forget to destroy any object you create.

B_ALGORITHM_OBJ randomAlgorithm;

status = C_GetRandomObject (ctx, &randomAlgorithm);
if (status != 0)
 goto CLEANUP;

status = B_GenerateKeypair (rsaKeyPairGenerator, publicKey, privateKey,
 randomAlgorithm, (A_SURRENDER_CTX *)NULL_PTR);
if (status != 0)
 goto CLEANUP;

B_DestroyAlgorithmObject (&rsaKeyPairGenerator);
B_DestroyKeyObject (&publicKey);
B_DestroyKeyObject (&privateKey);
2 9 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Getting Key Information Out of a Key Object
Getting Key Information Out of a Key Object
You will almost certainly want to save your keys. You cannot save a key object, so you
must extract the information out of a key object. Do this using B_GetKeyInfo.

This routine will take a key object and return to you a pointer to the information in a
form you indicate. The easiest way to save key information is in its BER-encoded
format. An RSA key is made up of a number of components, modulus and exponent
for a public key, and modulus, private exponent, two primes, two prime exponents,
and a coefficient for a private key. The BER-encoding of a key combines all this
information into one series of bytes.

You tell Crypto-C how you want the key formatted by passing a KI type. Refer to the
Crypto-C API Reference for a description of all the KIs available. Each entry describes
how to use the KI in a call to B_GetKeyInfo.

At this point, you have a pointer to the key data, not the key data itself. Crypto-C
returned a pointer that points to the location inside the key object where you can go to
find the information. Once you alter or destroy the key object, that pointer is no
longer valid. You must copy the key data into your own buffer, file or database before
destroying the key object.

In addition, the key data is in cleartext. It is not encrypted or protected in any way.
That is not of concern with the public key, but the private key must remain private.
You must save that key data in protected format. Your method may be a tamper-
resistant hardware device. You may want to encrypt the key using a password-based
algorithm or export using PKCS #12 (see the Crypto-C Developer’s Guide for more
information on this topic). See the samples/keypair/keywrap.c sample program for
an example that encrypts the private key with a password-based algorithm.

ITEM *publicKeyBER, *privateKeyBER;

status = B_GetKeyInfo ((POINTER *)&publicKeyBER, publicKey,
 KI_RSAPublicBER);
if (status != 0)
 goto CLEANUP;

status = B_GetKeyInfo ((POINTER *)&privateKeyBER, privateKey,
 KI_PKCS_RSAPrivateBER);
if (status != 0)
 goto CLEANUP;
A p p e n d i x A U s i n g B S A F E C r y p t o - C 29 3

Setting a Key Object
Setting a Key Object
There are times in Cert-C when you need a key in an object. Immediately after you
have generated a key pair, they are in objects, but you cannot save them in object
format. That means you must be able to build a key object from the key data. Do this
using B_SetKeyInfo.

The RecallPBKeyData and PBUnprotectPrivateKey routines are not Crypto-C calls;
they are there as placeholders to indicate that you get your key data out of storage.
The data may be stored with password-based protection, in which case you need to
decrypt the data.

B_KEY_OBJ privateKey = (B_KEY_OBJ)NULL_PTR;

unsigned char *pbPrivateKeyData = NULL_PTR;
unsigned char *privateKeyDataBER = NULL_PTR;
unsigned int pbPrivateKeyDataLen, privateKeyDataBERLen;

ITEM privateKeyItem;

status = RecallPBKeyData (&pbPrivateKeyData, &pbPrivateKeyDataLen);
if (status != 0)
 goto CLEANUP;

status = PBUnprotectPrivateKey (&privateKeyDataBER, &privateKeyDataBERLen,
 pbPrivateKeyData, pbPrivateKeyDataLen);
if (status != 0)
 goto CLEANUP;

privateKeyItem.data = privateKeyDataBER;
privateKeyItem.len = privateKeyDataBERLen;

status = B_CreateKeyObject (&privateKey);
if (status != 0)
 goto CLEANUP;

status = B_SetKeyInfo (privateKey, KI_PKCS_RSAPrivateBER,
 (POINTER)&privateKeyItem);
if (status != 0)
 goto CLEANUP;
2 9 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Appendix B

BCERT Compatibility
This section summarizes compatibility issues to consider when migrating BCERT
applications to Cert-C. You can look at the bcdemo program as an example of a BCERT
application that has been modified to use Cert-C.
29 5

BCERT Backward Compatibility
BCERT Backward Compatibility
Minimizing the effort required for BCERT customers to migrate to Cert-C was an
important criterion when designing Cert-C. Therefore, the Cert-C API is completely
backward-compatible with the BCERT API. This means that at a minimum, a BCERT
application only needs to be recompiled (with the compiler referencing the set of
header files included with Cert-C) and relinked to produce the new executable, which
uses Cert-C instead of BCERT. You do not need to make any changes to the source
code, because the necessary header file names have been preserved and modified
appropriately.

Recompiling and relinking is all you need to do if you want to run your BCERT
applications with Crypto-C 6.1 or later. An example of a BCERT application rebuilt to
use Cert-C, with no changes of consequence to the source code, is discussed later in
this document. See “An Example: bcdemo” on page 304, where the _BCERT_API_
macro is discussed.

Even though the Cert-C API is compatible with the BCERT API, a BCERT application
must be recompiled in order to use Cert-C. This is because in some cases, function
definitions had to be changed in order to maintain backward-compatibility. As an
example, consider the C_SignCert function. In the BCERT API, the function prototype
is as follows:

The last two arguments are not necessary when using the Cert-C model. This is
because the random object and surrender context are now services that are registered
and accessible by Cert-C in the Cert-C context. In order to support the old BCERT API
and the suggested use in the Cert-C model, the C_SignCert prototype has been
changed in Cert-C as follows:

See “API Modifications/Updates” on page 297 for more information regarding other

int C_SignCert (
 CERT_OBJ certObj,
 B_KEY_OBJ privateKey,
 B_ALGORITHM_OBJ randomObject,
 A_SURRENDER_CTX *surrenderContext);

int C_SignCert (
 CERT_OBJ certObj,
 B_KEY_OBJ privateKey,
 …);
2 9 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

BCERT Backward Compatibility
API changes.

API Modifications/Updates
In this section, we detail portions of the BCERT API that have been changed or
deprecated in Cert-C. (The deprecated BCERT APIs can still be used in the current
version of Cert-C, but we recommend that no new applications be developed that use
deprecated APIs). For more details on the Cert-C APIs, see the API Reference.

Data Structures

BCERT_VERSION

This string was used to hold the BCERT version number in a form suitable for
printing out (see samples/bcdemo/source/demo.c).

APPL_CTX

The use of the APPL_CTX has been deprecated. Instead, use the CERTC_CTX to store data
related to an application’s working environment, such as service-provider instances.

CERT_REQUEST_OBJ, CERT_REQUEST_VERSION_1,
CERT_REQUEST_VERSION_2, CERT_REQUEST_FIELDS,
DEFAULT_CERT_REQUEST_VERSION

These CERT_REQUEST_* data structures have been deprecated. We recommend that
you use their PKCS10_* counterparts to avoid confusion between the higher-level PKI
certificate requests and the lower-level PKCS #10 certificate requests.

Recommended replacements for the data structures are shown in the following table.

Note: CERT_REQUEST_VERSION_2 was not supported in BCERT, but was present in
the header file. Therefore, no replacement for CERT_REQUEST_VERSION_2 is
given.

Table A-1 Deprecated Structures and Their Recommended Replacements

Deprecated Structure Recommended Replacement

CERT_REQUEST_OBJ PKCS10_OBJ

CERT_REQUEST_VERSION_1 PKCS10_VERSION_1
A p p e n d i x B B C E R T C o m p a t i b i l i t y 29 7

BCERT Backward Compatibility
ET_POLICY_CONSTRAINTS, ET_POLICY_CONSTRAINTS_LEN,
POLICY_CONSTRAINTS

The implementation of the Policy Constraints extension in BCERT was an
implementation of a deprecated version of the extension; it is no longer present in the
X.509 standard. For information on the updated implementation, see the API Reference
for information about ET_POLICY_CONSTRAINTS_36, ET_POLICY_CONSTRAINTS_36_LEN,
and the POLICY_CONSTRAINTS_36 structure.

Functions

PKCS #10 Certificate Requests

The following BCERT procedures have been deprecated to avoid confusion that may
arise because of the general term "CertRequest" in the function name. They are
replaced with procedures that contain the term “PKCS10” to differentiate the functions
that operate on the lower-level PKCS #10 objects versus the functions that operate on
the higher-level PKI Certificate Requests.

CERT_REQUEST_FIELDS PKCS10_FIELDS

DEFAULT_CERT_REQUEST_VERSION DEFAULT_PKCS10_VERSION

int C_CreateCertRequestObject (
 CERT_REQUEST_OBJ *certRequestObject);

void C_DestroyCertRequestObject (
 CERT_REQUEST_OBJ *certRequestObject);

int C_GetCertRequestFields (
 CERT_REQUEST_OBJ certRequestObject,
 CERT_REQUEST_FIELDS *certRequestFields);

int C_SetCertRequestFields (
 CERT_REQUEST_OBJ certRequestObject,
 CERT_REQUEST_FIELDS *certRequestFields);

int C_GetCertRequestDER (
 CERT_REQUEST_OBJ certRequestObject,
 unsigned char **der,
 unsigned int *derLen);

Table A-1 Deprecated Structures and Their Recommended Replacements

Deprecated Structure Recommended Replacement
2 9 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

BCERT Backward Compatibility
Instead, use the following procedures, respectively:

int C_SetCertRequestBER (
 CERT_REQUEST_OBJ certRequestObject,
 unsigned char *ber,
 unsigned int berLen);

int C_SignCertRequest (
 CERT_REQUEST_OBJ certRequestObject,
 B_KEY_OBJ subjectPrivateKey,
 B_ALGORITHM_OBJ randomObject,
 int signatureAlgorithm,
 unsigned char *digest,
 unsigned int *digestLen,
 unsigned int maxDigestLen,
 A_SURRENDER_CTX *surrenderContext);

int C_VerifyCertRequestSignature (
 CERT_REQUEST_OBJ certRequestObject,
 unsigned char *digest,
 unsigned int *digestLen,
 unsigned int maxDigestLen,
 A_SURRENDER_CTX *surrenderContext);

int C_CreatePKCS10Object(
 CERTC_CTX ctx,
 PKCS10_OBJ *pkcs10Object);

void C_DestroyPKCS10Object(
 PKCS10_OBJ *pkcs10Object);

int C_GetPKCS10Fields(
 PKCS10_OBJ pkcs10Object,
 PKCS10_FIELDS *pkcs10Fields);

int C_SetPKCS10Fields(
 PKCS10_OBJ pkcs10Object,
 PKCS10_FIELDS *pkcs10Fields);

int C_GetPKCS10DER(
 PKCS10_OBJ pkcs10Object,
 unsigned char **der,
 unsigned int *derLen);
A p p e n d i x B B C E R T C o m p a t i b i l i t y 29 9

BCERT Backward Compatibility
The following BCERT API has also been deprecated:

A new Cert-C API call to replace the deprecated C_DecomposePKCSCertRequestBER
has not been implemented. However, the GetCertObjFromPKCS10BER routine
provided in samples/bcdemo/source/fulfill.c can be used as a replacement.

X.509 Certificates and CRLs

The “Create” functions for certificates and CRLs have been changed to take a
CERTC_CTX instead of an APPL_CTX. This will compile with both old and new
applications because both context definitions resolve to a POINTER. Internally, the
implementation can detect which type of context was passed in, and operates
accordingly, as follows:

• If the context parameter is an APPL_CTX, the BCERT 1.0x implementation is used to
preserve old-style behavior.

• If the context parameter is a CERTC_CTX, the context is copied into the resulting
certificate or CRL object, and used as needed for operations on certificates and
CRLs, such as signing or verifying a signature.

Note that in the BCERT 1.0x implementation, it was acceptable to pass in a properly
cast NULL_PTR for the APPL_CTX when creating certificate or CRL objects. When

int C_SetPKCS10BER(
 PKCS10_OBJ pkcs10Object,
 unsigned char *ber,
 unsigned int berLen);

int C_SignPKCS10(
 PKCS10_OBJ pkcs10Object,
 B_KEY_OBJ subjectPrivateKey,
 int signAlgorithmID);

int C_VerifyPKCS10Signature(
 PKCS10_OBJ pkcs10Object);

int C_DecomposePKCSCertRequestBER (
 CERT_OBJ certObject,
 ATTRIBUTES_OBJ attributesObject,
 unsigned char *certRequestBER,
 unsigned int certRequestBERLen,
 unsigned char *digest,
 unsigned int *digestLen,
 A_SURRENDER_CTX *surrenderContext);
3 0 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

BCERT Backward Compatibility
switching over to use the Cert-C API, you must replace (APPL_CTX)NULL_PTR with the
new CERTC_CTX that the application is using. Failure to do this will result in an
application crash.

The following function declarations have been revised in Cert-C to take a CERTC_CTX,
but will also accept a BCERT APPL_CTX for backward compatibility:

Operations that sign and verify certificates and CRLs are defined with variable
parameter lists. Internally, two implementations are supported: the BCERT 1.0x style
and the Cert-C style. The BCERT 1.0x style parameter list has a random object, when
signing, and a surrender context. Since both of these are included in the CERTC_CTX,
they are not needed as parameters for Cert-C-style calls. Internally, the
implementation checks the certificate or CRL object. If it has a CERTC_CTX associated
with it, the Cert-C-style implementation will be invoked. Otherwise, the BCERT 1.0x
implementation will be executed.

The following function definitions are for signing and verifying signatures on

int C_CreateCertObject (
 CERT_OBJ *certObj,
 CERTC_CTX ctx);

int C_CreateCRLObject (
 CRL_OBJ *certObj,
 CERTC_CTX ctx);

int C_CreateExtensionsObject (
 EXTENSIONS_OBJ * extensionsObject,
 unsigned int extensionsObjectType,
 CERTC_CTX ctx);

int C_GetExtensionTypeInfo (
 CERTC_CTX ctx,
 unsigned char *type,
 unsigned int typeLen,
 EXTENSION_TYPE_INFO *info);

int C_RegisterExtensionType (
 CERTC_CTX ctx,
 EXTENSION_TYPE_INFO *info);
A p p e n d i x B B C E R T C o m p a t i b i l i t y 30 1

BCERT Backward Compatibility
certificates and CRLs:

A variable parameter list is used for backward compatibility. Cert-C checks to see if
the certObj/crlObj has a CERTC_CTX in it, which was placed there when the object
was created. If it does not, the implementation knows that this is a BCERT 1.0x style
call, and supports that parameter-list style. If there is a CERTC_CTX in the certObj/
crlObj, the Cert-C style of parameter list is used, getting the random object and
private key from the CERTC_CTX in the certObj/crlObj.

The two forms of the parameter list supported in the implementation are:

1. BCERT 1.0x parameter list: the implementation for this version is unchanged from
BCERT 1.02. See the BCERT 1.0 Library Reference Manual for function/parameter
list description.

int C_SignCert (
 CERT_OBJ certObj,
 B_KEY_OBJ privateKey,
 …
);

int C_VerifyCertSignature (
 CERT_OBJ certObj,
 B_KEY_OBJ publicKey,
 …
);

int C_SignCRL (
 CRL_OBJ crlObj,
 B_KEY_OBJ privateKey,
 …
);

int C_VerifyCRLSignature (
 CRL_OBJ crlObj,
 B_KEY_OBJ privateKey,
 …
);

int C_SignCert (
 CERT_OBJ certObj
 B_KEY_OBJ privateKey
 B_ALGORITHM_OBJ randomObject
 A_SURRENDER_CTX *surrenderContext);
3 0 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

BCERT Backward Compatibility
2. Cert-C style parameter list: the implementation uses the Cert-C context in the
certObj/crlObj for the random object and the surrender context.

For C_VerifyCertSignature and C_VerifyCRLSignature, both E_PUBLIC_KEY and
E_INVALID_SIGNATURE are returned. However, when there is a problem with the
public key that is passed in, E_PUBLIC_KEY is now returned instead of
E_INVALID_SIGNATURE. For example, when there is an invalid key length or when the
key object is not set. Such problems are present when the following Crypto-C errors
occur:

• BE_KEY_INFO

• BE_KEY_LEN

• BE_KEY_NOT_SET

int C_VerifyCertSignature (
 CERT_OBJ certObj
 B_KEY_OBJ publicKey
 A_SURRENDER_CTX *surrender);

int C_SignCRL (
 CRL_OBJ crlObj
 B_KEY_OBJ privateKey
 B_ALGORITHM_OBJ randomObject
 A_SURRENDER_CTX *surrenderContext);

int C_VerifyCRLSignature (
 CRL_OBJ crlObj
 B_KEY_OBJ privateKey
 A_SURRENDER_CTX *surrenderContext);

int C_SignCert (
 CERT_OBJ certObj,
 B_KEY_OBJ privateKey);

int C_VerifyCertSignature (
 CERT_OBJ certObj,
 B_KEY_OBJ publicKey);

int C_SignCRL (
 CRL_OBJ crlObj,
 B_KEY_OBJ privateKey);

int C_VerifyCRLSignature (
 CRL_OBJ crlObj,
 B_KEY_OBJ privateKey);
A p p e n d i x B B C E R T C o m p a t i b i l i t y 30 3

An Example: bcdemo
• BE_KEY_OBJ

• BE_KEY_OPERATION_UNKNOWN

• BE_WRONG_KEY_INFO

Except for the preceding errors, E_INVALID_SIGNATURE is returned as before.

An Example: bcdemo
The source for the BCERT Command-Line demo program (bcdemo) is located in the
samples/bcdemo directory. To examine the sources, build the program, or run the
program within Microsoft Visual Studio, you can open the samples/make/build/
samples.dsw workspace, which includes the project file for bcdemo.

This program is an example of an application originally written using BCERT that has
been migrated to use Cert-C. It is possible to build and run the program using the
original BCERT API only, or to build and run the program using the recommended
Cert-C replacements for deprecated BCERT data types and function calls.

To build and run the program in its original form, as shipped with BCERT 1.02, be
sure that the _BCERT_API_ preprocessor macro is defined. Most compilers have a -D
option to enable you to do this. In Microsoft Visual Studio, go to Project | Settings |
C/C++ | General | Preprocessor Definitions (making sure that the appropriate
project and configuration on the left-hand side is selected) to list the preprocessor
macros you want to define. If the _BCERT_API_ macro is not defined, bcdemo is built
using the Cert-C API.

When building bcdemo with the preprocessor macro _BCERT_API_ defined, the code to
be compiled is exactly the same as the source for bcdemo, which was shipped with
BCERT 1.02, with the following exceptions:

With the use of Crypto-C 4.3 or later, the following preprocessor macro also had to be
defined for Win32 platforms (other platforms have an analogous value):
RSA_PLATFORM=RSA_I386_486

• To access the T_time function (in stdlibrf), the following macro is also defined in
the project settings: RSA_STD_TIME_FUNCS=RSA_ENABLED

• Line 28 of crl.c was changed from CRL_NUMBER to DEMO_CRL_NUMBER to avoid
conflicts with the definition in the Cert-C include file, certext.h.

• Type casts were added on lines 280 and 289 of fulfill.c to silence compiler
warnings.
3 0 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

An Example: bcdemo
• The statement "return 0;" has been added to line 59 of myprint.c to silence
compiler warnings.

• The statement "UNUSED_ARG (ioContext);" has been added to line 99 of
myprint.c to silence compiler warnings.

Be aware that when the _BCERT_API_ switch is turned on, a global random object is
initialized with the same hard-coded seed (see InitializeRandomObject in demo.c)
for demonstration purposes only. A BCERT application developer had to properly
seed a random object. When the _BCERT_API_ switch is off, the bcdemo application
uses the method provided by Cert-C to automatically seed a random-algorithm object
(in the CERTC_CTX) properly.

If the bcdemo executable was built with the _BCERT_API_ switch on, the following
header will be displayed:

Otherwise, if the _BCERT_API_ switch was not turned on during compilation, the
following header is instead displayed:

The following description of the bcdemo program, from a user’s perspective, is done
with an executable built with the _BCERT_API_ switch turned on. However, the
behavior of the bcdemo program is the same (from a user’s perspective) whether the
BCERT API or Cert-C API is used.

Note that the _BCERT_API_ macro is only used as part of the demo code to enable the
original BCERT code and the Cert-C updates to coexist in the same file. None of the
Cert-C provider code, toolkit code, or header files use this macro.

BCERT Demo version 1.02

Cert-C Demo 1.0
A p p e n d i x B B C E R T C o m p a t i b i l i t y 30 5

User's Guide for bcdemo
User's Guide for bcdemo

Introduction
The BCERT Command-Line Demo (bcdemo) is an example application that can
generate and fulfill PKCS #10 certificate requests, and add users to certificate
revocation lists (CRLs). The bcdemo program also utilizes X.509 v3 extensions in the
certificates and CRLs that it generates.

Running the Demo
The bcdemo program is a menu-driven application. It prompts the user for commands
and waits for the responses. The various commands and expected responses will be
explained later. To start bcdemo, enter the following at the system prompt:

You may also run bcdemo in a response-file mode, where you list the responses you
would type at the menu prompts in a file so that bcdemo reads from this prepared file.
For example, to read commands from a file named test.in, enter the following at the
system prompt:

Notice that this uses '<' to redirect test.in as the input to bcdemo.

For demonstration purposes, there is a default issuer "C = US, O = Example
Issuer", and a default subject "C = US, O = Example Issuer, CN = Test User 1".

Using bcdemo
When you type bcdemo at the system prompt (make sure you are in the proper

> bcdemo

> bcdemo < test.in
3 0 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

User's Guide for bcdemo
directory), the following top-level menu appears:

You may enter the uppercase or lowercase letter for the command you want. Only the
first character of the command you type is checked. This is true for all of the
commands. So, for example, to fulfill a request, you may type "f" or "F".

Each of the commands on this menu are described below.

Generate PKCS Certificate Request

To generate a PKCS certificate request, enter "g" or "G" at the menu. The bcdemo
program will prompt you for the key size and the name of the file that contains the
certificate request. The bcdemo program does the following:

• Generates an RSA key pair.
• Sets the subject name to a default subject name of "C = US, O = Example

Issuer, CN = Test User 1".
• Sets the issuer name to the default issuer name "C = US, O = Example Issuer".
• Sets the public-key information to the BER encoding of the public key just

generated.
• Signs the certificate request with the corresponding private key.
• Writes the certificate request to a file.

The following is an example of the “Generate PKCS Certificate Request” command:

BCERT Demo version 1.02

F - Fulfill PKCS Certificate Request
G - Generate PKCS Certificate Request
R - Revoke Certificate
Q - Quit

Enter command :
A p p e n d i x B B C E R T C o m p a t i b i l i t y 30 7

User's Guide for bcdemo
Note: User’s inputs are printed in bold.

BCERT Demo version 1.02

F - Fulfill PKCS Certificate Request
G - Generate PKCS Certificate Request
R - Revoke Certificate
Q - Quit

Enter command :
g

Please enter a key size between 512 and 2048:
1024

Generating RSA key pair (might take a while!)...
......

Signing the certificate request...

Certificate Request information:

Version: 0
Subject Name:

C = US
O = Example Issuer
CN = Test User 1

Public Key Info:
30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d 01 01 01
05 00 03 81 8d 00 30 81 89 02 81 81 00 d5 6f d7
5a e7 e3 eb 38 77 df 9b 1b 92 71 b6 65 cd b3 30
d6 2a 4a 47 6a d8 18 7b 10 b4 45 2f 6f 7c fc f1
71 e9 5d 7e 14 f7 83 74 5c 12 7e db 90 06 db 68
83 a1 77 88 1b ff 2e 6d cb 25 49 61 68 15 0b 4f
af 7a 7c 38 88 a3 46 f3 1c c9 e5 42 3b b6 35 27
1d 23 cb 3c 0f eb ae 39 2e 25 d0 8f 9e e5 9a 8c
44 a2 44 cc 42 6e 13 12 c6 1a 9f 79 3b e8 4d 69
83 a9 66 27 87 ff 0b 0f 6a 27 c2 7f 39 02 03 01
00 01
Attributes DER:
31 1e 30 1c 06 09 2a 86 48 86 f7 0d 01 09 05 31
0f 17 0d 39 32 30 31 32 32 31 39 31 34 32 35 5a

Please enter a filename to save the certificate request in:
cert.req
3 0 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

User's Guide for bcdemo
Fulfill PKCS Certificate Request
To fulfill a PKCS certificate request, enter "f" or "F" at the menu. The bcdemo program
prompts you for the name that contains the certificate request and does the following:

• Validates the signature on the certificate request to make sure that the signed
public key corresponds to the private key that is used to sign the certificate
request.

• Decomposes a certificate request into an unsigned certificate object.
• Sets the issuer name to the default issuer name "C = US, O = Example Issuer".
• Sets the certificate validity to 1 year, valid 30 days from the current time.
• Sets the serial number.
• Adds the following x.509 v3 extensions:

- User-Defined Extension Type: contains the signing time attribute.
- Key Usage: allows the certificate to be used for digital signatures, but not

certificate signing.
- Private-Key Usage Period: the private key validity starts at November 6, 1996

9:06:21.001111 UTC time.
• Signs the certificate.
• Writes the fulfilled certificate to a file.

The following is an example of the “Fulfill PKCS Certificate Request” command:

Note: User’s inputs are printed in bold

The certificate request has been generated successfully!

BCERT Demo version 1.02

F - Fulfill PKCS Certificate Request
G - Generate PKCS Certificate Request
R - Revoke Certificate
Q - Quit

Enter command :
f

Please enter the filename for the certificate request:
cert.req
A p p e n d i x B B C E R T C o m p a t i b i l i t y 30 9

User's Guide for bcdemo
Validating signature on the certificate request...

Fulfilled Certificate information:
Version: 2
Signature Algorithm: MD5 WITH RSA ENCRYPTION
Serial Number:
20 01 01 01 0b
Subject Name:

C = US
O = Example Issuer
CN = Test User 1

Issuer Name:
C = US
O = Example Issuer

Validity Start:
8/31/1996 - 23:39:30
Validity End:
8/30/1997 - 23:39:29
Public Key:
30 81 9f 30 0d 06 09 2a 86 48 86 f7 0d 01 01 01
05 00 03 81 8d 00 30 81 89 02 81 81 00 d5 6f d7
5a e7 e3 eb 38 77 df 9b 1b 92 71 b6 65 cd b3 30
d6 2a 4a 47 6a d8 18 7b 10 b4 45 2f 6f 7c fc f1
71 e9 5d 7e 14 f7 83 74 5c 12 7e db 90 06 db 68
83 a1 77 88 1b ff 2e 6d cb 25 49 61 68 15 0b 4f
af 7a 7c 38 88 a3 46 f3 1c c9 e5 42 3b b6 35 27
1d 23 cb 3c 0f eb ae 39 2e 25 d0 8f 9e e5 9a 8c
44 a2 44 cc 42 6e 13 12 c6 1a 9f 79 3b e8 4d 69
83 a9 66 27 87 ff 0b 0f 6a 27 c2 7f 39 02 03 01
00 01

Certificate Extensions:

Type #1: User Defined Extensions
Criticality: TRUE
Extension Value:
31 1e 30 1c 06 09 2a 86 48 86 f7 0d 01 09 05 31
0f 17 0d 39 36 30 38 32 38 32 33 33 39 33 30 5a

Type #2: Key Usage
Criticality: FALSE
CF_DIGITAL_SIGNATURE: YES
CF_KEY_CERT_SIGN: NO
3 1 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

User's Guide for bcdemo
Revoke certificate
To revoke a certificate, enter "r" or "R" at the menu. The bcdemo program prompts
you for the name of the file that contains the certificate to be revoked and does the
following:

• Reads in the certificate from file.
• Creates a CRL reason code extension for revoking the certificate.
• Adds the certificate’s serial number to the issuer’s CRL.
• Updates the last and next update period.
• Signs the CRL with the issuer’s private key.
• Writes the CRL to a file.

The following is an example of the “Revoke Certificate” command:

Note: User’s inputs are printed in bold.

Type #3: Private Key Usage Period
Criticality: FALSE
Starting:

Year: 1996 Month: 11 Day: 6 Hour: 21
Minute: 6 Second: 27 Micro-second: 1111 Time zone: 0

Ending:
Year: 1997 Month: 11 Day: 6 Hour: 21
Minute: 16 Second: 27 Micro-second: 3333 Time zone: 0

Please enter a filename to save the approved certificate in:
cert.apr
The certificate request has been fulfilled!

BCERT Demo version 1.02

F - Fulfill PKCS Certificate Request
G - Generate PKCS Certificate Request
R - Revoke Certificate
Q - Quit

Enter command :
r

Please enter the filename for the certificate to revoke:
cert.apr
A p p e n d i x B B C E R T C o m p a t i b i l i t y 31 1

User's Guide for bcdemo
Quit

Enter "q" or "Q" to quit bcdemo.

Enter reason for revoking the certificate.

0 - Unspecified Reason
1 - Key Compromise
2 - CA Compromise
3 - Affiliation Change
4 - Superseded
5 - Cessation of Operation
6 - Hold Certificate
8 - Remove Certificate From CRL

Please select a number:
5

Please enter the filename to save the new CRL in:
cert.crl

The certificate has been revoked!
3 1 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Programmer's Guide for bcdemo
Programmer's Guide for bcdemo
The C source code files for the BCERT Command-Line Demo (bcdemo) are provided
with the toolkit in the samples/bcdemo/include and samples/bcdemo/source
directories. The source files are:

crl.c and crl.h
These files contain the utilities to extract certificate information, to add entries along
with the revocation reason to an existing CRL, and to sign the CRL.

dchooser.c and dchooser.h
These files contain the algorithm methods for random number generation and RSA
key generation.

demo.c and demo.h
These files contain the main function, the menu, and other user prompts demo.c uses
the standard C library functions such as printf(), fopen(), etc.

dmenu.c and dmenu.h
These files contain the utilities to display the menu, get menu selections, and route
these commands to the corresponding utility for execution.

dtime.c and dtime.h
These files contain routines to convert seconds since 1970 into day, month, year, hour,
minute, and second.

dutil.c and dutil.h
These files contain utilities to make name objects for the default issuer and default
subject names, to read from and write to files, and to convert error codes to error
messages.

exten.c and exten.h
These files contain utilities to create extension objects and add extension values to
A p p e n d i x B B C E R T C o m p a t i b i l i t y 31 3

Programmer's Guide for bcdemo
these objects.

fulfill.c and fulfill.h
These files contain utilities to decompose information from a certificate request into
an unsigned certificate object, add default-supported X.509 v3 extensions, and sign
the certificate.

genreq.c and genreq.h
These files contain utilities to generate RSA key pairs, generate certificate requests for
a default subject, and sign requests.

inoutcl.c and inoutcl.h
These files contain utilities to read input and write output either from the standard I/
O or from files.

myprint.c and myprint.h
These files contain utilities to print the contents of certificate objects and certificate-
request objects, and X.509 v3 extensions.

simpleio.c and simpleio.h
These files contain I/O interface routines such as the IO_CTX Read() callback.

The routine SimpleWriteText() uses the constant SKIP_CR or SKIP_LF.
SimpleWriteText() is used to handle output for "text" files properly, by converting
CR/LF end-of-line delimiters to the local format. For example, on UNIX, define
SKIP_CR=1 in order to remove carriage return characters, leaving only line feed as the
delimiter. The default is not to skip CR and LF, leaving them both in as delimiters.

If any of these values need to be changed from the default, a compiler flag can set
them. For example:

surrende.c and surrende.h
These files contain the surrender context, which is used by Cert-C to surrender control

 -DSKIP_CR=1
3 1 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Programmer's Guide for bcdemo
to the application during a lengthy operation such as RSA key-pair generation. A
surrender function callback is included, which will output a '.' (period) to the screen
each time the application gets control from Cert-C.

userextn.c and userextn.h
These files contain a user-defined extension, which may be added to an
extensionsObject of type CRL_EXTENSIONS_OBJ or CRL_EXTENSIONS_ENTRY_OBJ. Also,
they include callbacks for the extension handler. They demonstrate how an
application may create its own user-defined extensions and incorporate them into the
Cert-C extensions processing engine.
A p p e n d i x B B C E R T C o m p a t i b i l i t y 31 5

3 1 6

Appendix C

References
The references contained in this appendix may not be exhaustive. Check the RSA
Laboratories Web site (http://www.rsasecurity.com/rsalabs/) for references to
additional standards. For explanations of standards relevant to Cert-C and
certification, search the RSA Laboratories’ FAQs (http://www.rsasecurity.com/
rsalabs/faq/).
31 7

http://www.rsasecurity.com/rsalabs/faq/
http://www.rsasecurity.com/rsalabs/faq/
http://www.rsasecurity.com/rsalabs/

ITU Recommendations
ITU Recommendations
The ITU-T texts are available only through subscription. See the International
Communication Union (ITU) Web site for more information (http://www.itu.int/).

RSA Laboratories provides an overview of ASN.1, which is entitled A Layman's Guide
to a Subset of ASN.1, BER, and DER. See the RSA Laboratories Web site (http://
www.rsasecurity.com/rsalabs/pkcs/).

Recommendation

http://www.itu.int/
itudoc/itu-t/rec/x/
x500up/

Recommendation X.509: Information technology -
Open Systems Interconnection - The Directory:
Authentication framework

x509.html

Recommendation X.680: Information technology -
Abstract Syntax Notation One (ASN.1):
Specification of basic notation

x680.html

Recommendation X.690 - Information technology -
ASN.1 encoding rules - Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules
(CER), and Distinguished Encoding Rules (DER)

x690.html
3 1 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

http://www.itu.int/
http://www.rsasecurity.com/rsalabs/pkcs/
http://www.rsasecurity.com/rsalabs/pkcs/
http://www.itu.int/itudoc/itu-t/rec/x/x500up/
http://www.itu.int/itudoc/itu-t/rec/x/x500up/x509.html
http://www.itu.int/itudoc/itu-t/rec/x/x500up/x680.html
http://www.itu.int/itudoc/itu-t/rec/x/x500up/x690.html

PKCS
PKCS
Some standards figure prominently in the Cert-C API in that Cert-C APIs are directly
devoted to the implementation of these standards, such as PKCS #7, #10, #11, and #12.
Some standards rely on other standards in the series. For instance, PKCS #7 relies
upon PKCS #1, #5, and #9. The Cert-C API includes support for those standards as
well.

For a complete description of the Public-Key Cryptography Standards, see the RSA
Laboratories Web site (http://www.rsasecurity.com/rsalabs/pkcs/).

Standard
http://www.rsasecurity.com/
rsalabs/pkcs/

RSA Encryption Standard PKCS #1

Diffie-Hellman Key-Agreement Standard PKCS #3

Password-Based Cryptography Standard PKCS #5

Cryptographic Message Syntax Standard PKCS #7

Private-Key Syntax PKCS #8

Selected Attribute Types Standard PKCS #9

Certification Request Syntax Standard PKCS #10

Cryptographic Token Interface Standard PKCS #11

Personal Information Exchange Syntax Standard PKCS #12

Elliptic-Curve Cryptography Standard PKCS #13

Cryptographic Token Information Format Standard PKCS #15
A p p e n d i x C R e f e r e n c e s 31 9

http://www.rsasecurity.com/rsalabs/pkcs/
http://www.rsasecurity.com/rsalabs/pkcs/
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-3/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-5/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-12/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-13/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-15/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-10/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-9/index.html

PKIX
PKIX
For additional information regarding ongoing Public-Key Infrastructure X.509 and
PKIX drafts and standards, see the IETF Working Group, Public-Key Infrastructure
(http://www.ietf.org/html.charters/pkix-charter.html).

RFCs

RFC Drafts

 RFC Name http://www.ietf.org/rfc.html

Internet X.509 Public-Key Infrastructure
Certificate and CRL Profile

RFC 3280

Internet X.509 Public-Key Infrastructure
Certificate and CRL Profile

RFC 2459

Internet X.509 Public-Key Infrastructure
Certificate Management Protocols
[CMP]

RFC 2510

Internet X.509 Public-Key Infrastructure
Certificate Request Message Format
[CRMF]

RFC 2511

Internet X.509 Public-Key Infrastructure
Online Certificate Status Protocol -
OCSP [OCSP]

RFC 2560

 RFC Draft Name http://www.ietf.org/ids.by.wg/pkix.html

Internet X.509 Public-Key Infrastructure
Certificate Management Protocols
[CMP]

draft-ietf-pkix-rfc2510bis-06

Transport Protocols for CMP draft-ietf-pkix-cmp-transport-protocols-04

Internet X.509 Public-Key Infrastructure
Certificate Request Message Format
[CRMF]

draft-ietf-pkix-rfc2511bis-04
3 2 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

http://www.ietf.org/html.charters/pkix-charter.html
http://www.ietf.org/rfc/

UTF-8
UTF-8
The Cert-C API conforms to RFC 2279 when representing and requiring character
strings. UTF-8 has the characteristic of preserving the full US-ASCII range. This
provides compatibility with file systems, parsers, and other software that rely on US-
ASCII values, but are transparent to other values.

For information on UNICODE standards, see the UNICODE Consortium Web site
(http://www.unicode.org).

RFC http://www.ietf.org/rfc.html

UTF-8, a transformation format
of ISO 10646

RFC 2279
A p p e n d i x C R e f e r e n c e s 32 1

http://www.ietf.org/rfc/rfc2279.txt
http://www.ietf.org/rfc/
http://www.unicode.org

SCEP
SCEP
The Cisco Systems’ Simple Certificate Enrollment Protocol (SCEP) specification can be
found at http://www.cisco.com/warp/public/cc/pd/sqsw/tech/scep_wp.htm. The
Cert-C SCEP Database service provider and Cert-C SCEP PKI service provider APIs
conform to this standard.
3 2 2 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Index
A
A_SURRENDER_CTX 84
Abstract Syntax Notation One 46
AllocAndCopy 92, 271, 272, 273, 276, 278
ALLOW_OVERRIDE_CRITICALITY 280
AM_RSA_KEY_GEN 291
ANSI X.200 46
ANY_POLICY 195
API 22, 24
API layer 25
APPL_CTX 297
Application programming interface 24
application programming interface 22, 25
ASN.1 46
AT_X509_V3 266
Attribute Fields 36
attribute identifier 41
Attribute Value Assertion 102
ATTRIBUTES_OBJ 60, 101, 219, 268
attribute-value assertion 41
AUTHORITY_KEY_ID 272
AVA 41, 102, 216
AVA-List Functions 104

B
B_ALGORITHM_METHOD 291
B_ALGORITHM_OBJ 290, 292
B_CreateAlgorithmObject 287, 290
B_CreateKeyObject 287, 290, 294
B_DestroyAlgorithmObject 292
B_DestroyKeyObject 292
B_GenerateInit 287, 291
B_GenerateKeypair 292
B_GetKeyInfo 289, 293
B_KEY_OBJ 62, 172, 180, 211, 235, 238, 289,

290, 294
B_RandomInit 287
B_SetAlgorithmInfo 291
B_SetKeyInfo 294
b64.c 170
Base64-encoded data 170
basic CA constraints 187
Basic Encoding Rules 46
bcdemo 304, 306

BCERT 296
BCERT 1.0x 51
BCERT_VERSION 297
BE_KEY_INFO 303
BE_KEY_LEN 303
BE_KEY_NOT_SET 303
BE_KEY_OBJ 304
BE_KEY_OPERATION_UNKNOWN 304
BE_WRONG_KEY_INFO 304
BER 46
BER and DER Encoding 46
Building and Deploying Cert-C 56
Building Samples 57
BUILDTYPE 52

C
C_AddCertToList 92, 93, 94
C_AddCRLEntry 241, 243, 245
C_AddCRLToList 93
C_AddExtensionValue 255, 260, 265, 271, 282
C_AddItemToList 93, 96
C_AddListObjectEntry 92, 93, 95, 96, 278
C_AddNameAVA 104
C_AddPKIMsg 143
C_AddPrivateKeyToList 93
C_AddRecipientToList 92, 93
C_AddSignerToList 93
C_AddUniqueCertToList 93
C_AddUniqueCRLToList 93
C_AddUniqueItemToList 93
C_AddUniqueRecipientToList 93
C_AddUniqueSignerToList 93
C_BindService 28, 202
C_BindServices 28, 202
C_BuildCertPath 168, 182, 190, 191, 195, 196,

229
C_CertEntryHandler 92, 95
C_CheckCertRevocation 190, 191, 197, 199,

228, 229, 239, 242
C_CMS_OBJ 60
C_CompareExtension 255
C_CompareExtensions 204, 255
C_CreateCertObject 168, 169, 172, 174, 180,

182, 254, 301
32 3

C_CreateCertRequestObject 298
C_CreateCRLObject 229, 231, 232, 237, 254,

301
C_CreateExtension 255, 258, 265, 282, 285
C_CreateExtensionsObject 254, 255, 257, 301
C_CreateListObject 93, 96
C_CreateNameObject 103
C_CreatePKCS10Object 174, 175, 299
C_CreatePKICertConfReqObject 152
C_CreatePKICertConfRespObject 154
C_CreatePKICertReqObject 141, 149
C_CreatePKICertRespObject 151
C_CreatePKICertTemplateObject 142, 162
C_CreatePKIErrorMsgObject 160
C_CreatePKIKeyUpdateReqObject 141, 155
C_CreatePKIKeyUpdateRespObject 156
C_CreatePKIMsgObject 139
C_CreatePKIRevokeReqObject 141, 157
C_CreatePKIRevokeRespObject 159
C_CreatePKIStatusInfoObject 165
C_DecomposePKCSCertRequestBER 300
C_DeleteCRLEntry 241, 248
C_DeleteExtensionValue 255, 271
C_DeleteListObjectEntry 93
C_DestroyCertObject 168
C_DestroyCertRequestObject 298
C_DestroyCRLEvidence 199
C_DestroyCRLObject 229
C_DestroyExtension 255
C_DestroyExtensionsObject 255
C_DestroyListObject 93, 94, 96
C_DestroyNameObject 103
C_DestroyOCSPEvidence 199
C_DestroyPKCS10Object 299
C_DestroyPKICertConfReqObject 152
C_DestroyPKICertConfRespObject 154
C_DestroyPKICertReqObject 149
C_DestroyPKICertRespObject 151
C_DestroyPKICertTemplateObject 162
C_DestroyPKIErrorMsgObject 160
C_DestroyPKIKeyUpdateReqObject 155
C_DestroyPKIKeyUpdateRespObject 156
C_DestroyPKIRevokeReqObject 157
C_DestroyPKIRevokeRespObject 159
C_DestroyPKIStatusInfoObject 165
C_ExportPKCS12 44
C_FinalizeCertC 26, 148, 211, 214
C_FindCRLEntryBySerialNumber 241, 247,

251
C_FindExtensionByType 255
C_FreeIterator 202, 213, 214
C_GeneratePKIMsgProofOfPossession 70,

143
C_GeneratePKIProofOfPossession 70
C_GetAttributeInExtensionsObj 256, 266

C_GetAttributesDER 266
C_GetAttributeType 220, 221
C_GetAttributeTypeCount 219
C_GetAttributeValueCount 220, 221
C_GetCertDER 169, 180
C_GetCertFields 169, 171, 177, 179, 183, 267
C_GetCertInnerDER 169
C_GetCertRequestDER 298
C_GetCertRequestFields 298
C_GetCertTemplateExtensions 163
C_GetCertTemplateIssuerName 163
C_GetCertTemplateIssuerUniqueID 163
C_GetCertTemplatePublicKey 163
C_GetCertTemplateSerialNumber 163
C_GetCertTemplateSignatureAlgorithm 164
C_GetCertTemplateSubjectName 164
C_GetCertTemplateSubjectUniqueID 164
C_GetCertTemplateValidityEnd 164
C_GetCertTemplateValidityStart 164
C_GetCertTemplateVersion 164
C_GetCRLDER 230, 235, 236
C_GetCRLEntriesCount 242, 250
C_GetCRLEntry 242, 250, 251
C_GetCRLFields 230, 232, 238, 241, 243, 247
C_GetCRLInnerDER 230
C_GetEncodedExtensionValue 256, 271
C_GetExtensionCount 223, 256, 269, 283
C_GetExtensionDER 256, 262
C_GetExtensionInfo 223, 224, 256, 269, 283
C_GetExtensionsInAttributesObj 256, 267,

268
C_GetExtensionsObjectDER 256, 262, 266
C_GetExtensionTypeByIndex 223, 256, 269
C_GetExtensionTypeInfo 256, 271, 284, 285,

301
C_GetExtensionValue 223, 225, 256, 283
C_GetListObjectCount 94, 95, 97, 276
C_GetListObjectEntry 94, 95, 97, 276
C_GetNameAVA 104
C_GetNameAVACount 104, 216
C_GetNameDER 103, 178
C_GetNameString 103
C_GetNameStringReverse 104
C_GetNextCertInPath 190, 191
C_GetPKCS10DER 299
C_GetPKCS10Fields 176, 267, 299
C_GetPKICertConfReqCert 153
C_GetPKICertConfReqCertReqId 153
C_GetPKICertConfReqConfirmStatus 153
C_GetPKICertConfReqStatus 153
C_GetPKICertReqCertTemplate 150
C_GetPKICertReqControls 150
C_GetPKICertReqID 150
C_GetPKICertReqPOPType 150
C_GetPKICertReqRegInfo 150
3 2 4 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

C_GetPKICertRequestFields 70
C_GetPKICertRespCACerts 151
C_GetPKICertRespCertReqID 151
C_GetPKICertResponseFields 70
C_GetPKICertRespRegInfo 151
C_GetPKICertRespRequestedCert 146, 151
C_GetPKICertRespRequestedPrivateKey

151
C_GetPKICertRespStatus 145, 151
C_GetPKICertTemplateFromCertObject 142,

164
C_GetPKIFailInfo 146, 147, 161, 166
C_GetPKIFailInfoAux 147, 161, 166
C_GetPKIFailInfoAuxString 161
C_GetPKIMsg 143, 147
C_GetPKIMsgCount 143, 145, 147
C_GetPKIMsgDER 70
C_GetPKIMsgFields 70
C_GetPKIMsgSender 140
C_GetPKIMsgType 144
C_GetPKIRevokeReqBadSinceDate 158
C_GetPKIRevokeReqExtensions 158
C_GetPKIRevokeReqRevocationReason 158
C_GetPKIRevokeReqRevokeCert 158
C_GetPKIRevokeRespCertID 147, 159
C_GetPKIRevokeRespCRLs 147, 159
C_GetPKIRevokeRespStatus 145, 159
C_GetPKIStatus 146, 147, 161, 166
C_GetPKIStatusString 147, 161, 166
C_GetRandomObject 292
C_GetStringAttribute 221
C_GetSurrenderCtx 84
C_ImportPKCS12 44
C_InitializeCertC 26, 138, 193
C_InsertCert 203, 211
C_InsertCertList 203
C_InsertCRL 203, 211
C_InsertCRLList 203
C_InsertListObjectEntry 93
C_InsertPrivateKey 203, 211
C_InsertPrivateKeyBySPKI 203
C_IsSubjectSubordinateToIssuer 104
C_ItemEntryHandler 96
C_OpenStream 86
C_PrepareUnsignedCRLForIssuer 229
C_ReadFromPKCS12 82
C_ReadPKICertResponseMsg 70
C_RecipientInfoEntryHandler 92
C_RegisterExtensionType 255, 259, 271, 279,

280, 284, 301
C_RegisterService 28, 138, 193
C_RequestPKICert 70
C_RequestPKIMsg 70, 137, 140, 144
C_ResetCRLEntries 241
C_ResetExtensionsObject 255

C_ResetListObject 93
C_ResetNameObject 103
C_SelectCertByAttributes 204
C_SelectCertByExtensions 204, 255
C_SelectCertByIssuerSerial 204
C_SelectCertBySubject 204
C_SelectCRLByIssuerTime 205
C_SelectFirstCert 204, 212
C_SelectFirstCRL 205, 212
C_SelectFirstPrivateKey 205, 212
C_SelectNextCert 213
C_SelectNextCRL 205, 213
C_SelectNextPrivateKey 205, 213
C_SelectPrivateKeyByCert 206
C_SelectPrivateKeyBySPKI 206
C_SendPKIMsg 70
C_SendPKIRequest 70
C_SetCertBER 169, 170, 183
C_SetCertFields 169, 171, 179
C_SetCertInnerBER 169
C_SetCertRequestBER 299
C_SetCertRequestFields 298
C_SetCertTemplateExtensions 163
C_SetCertTemplateIssuerName 163
C_SetCertTemplateIssuerUniqueID 163
C_SetCertTemplatePublicKey 163
C_SetCertTemplateSerialNumber 163
C_SetCertTemplateSignatureAlgorithm 163
C_SetCertTemplateSubjectName 163
C_SetCertTemplateSubjectUniqueID 163
C_SetCertTemplateValidityEnd 163
C_SetCertTemplateValidityStart 163
C_SetCertTemplateVersion 163
C_SetCRLBER 229, 237
C_SetCRLFields 230, 234, 245, 248
C_SetCRLInnerBER 230
C_SetEncodedExtensionValue 254, 255, 271
C_SetExtensionBER 254, 256, 271
C_SetExtensionsObjectBER 254, 256, 271
C_SetNameBER 103, 178
C_SetPKCS10BER 175, 300
C_SetPKCS10Fields 299
C_SetPKICertConfReqCert 152
C_SetPKICertConfReqCertReqId 152
C_SetPKICertConfReqConfirmStatus 153
C_SetPKICertConfReqStatus 153
C_SetPKICertReqCertTemplate 142, 149
C_SetPKICertReqControls 149
C_SetPKICertReqID 150
C_SetPKICertReqPOPType 150
C_SetPKICertReqRegInfo 150
C_SetPKICertRequestFields 70
C_SetPKICertRespCACerts 151
C_SetPKICertRespCertReqID 151
C_SetPKICertResponseFields 70
I n d e x 32 5

C_SetPKICertRespRegInfo 151
C_SetPKICertRespRequestedCert 151
C_SetPKICertRespRequestedPrivateKey 151
C_SetPKICertRespStatus 151
C_SetPKIFailInfo 160, 165
C_SetPKIFailInfoAux 160, 165
C_SetPKIFailInfoAuxString 160
C_SetPKIMsgBER 70
C_SetPKIMsgFields 70
C_SetPKIMsgProtectionType 140
C_SetPKIMsgSender 140
C_SetPKIMsgType 139
C_SetPKIProviderData 83
C_SetPKIRevokeReqBadSinceDate 157
C_SetPKIRevokeReqExtensions 157
C_SetPKIRevokeReqRevocationReason 157
C_SetPKIRevokeReqRevokeCert 157
C_SetPKIRevokeRespCertID 159
C_SetPKIRevokeRespCRLs 159
C_SetPKIRevokeRespStatus 159
C_SetPKIStatus 160, 166
C_SetPKIStatusString 160, 166
C_SignCert 168, 172, 179, 296, 302, 303
C_SignCertRequest 299
C_SignCRL 229, 235, 241, 245, 249, 302, 303
C_SignPKCS10 300
C_UnbindService 202, 211, 214
C_UnregisterExtensionType 256
C_ValidateCert 182, 190, 191
C_ValidatePKIMsgProofOfPossession 70
C_ValidatePKIProofOfPossession 70
C_VerifyCertRequestSignature 299
C_VerifyCertSignature 168, 182, 184, 191, 200,

302, 303
C_VerifyCRLSignature 191, 200, 229, 240, 302,

303
C_VerifyPKCS10Signature 176, 300
C_WritePKICertRequestMsg 70
C_WritetoPKCS12 82
c4hook.c 55
CA 21, 37
Calling the Cert-C API 63
CERT_CTX 257
CERT_EXTENSIONS_OBJ 254, 257, 281
CERT_FIELDS 169, 171, 177, 183, 216, 254
CERT_OBJ 60, 167, 168, 169, 174, 182, 211, 254,

267
CERT_OBJ Functions 168
CERT_PATH_CTX 191, 194, 195
CERT_REQUEST_FIELDS 297, 298
CERT_REQUEST_OBJ 297
CERT_REQUEST_VERSION_1 297
CERT_REQUEST_VERSION_2 297
CERT_REVOCATION 198, 199
CERT_VERSION_1 168

CERT_VERSION_2 168
CERT_VERSION_3 168, 177
Cert-C API 20, 25
Cert-C Architecture 24
Cert-C Components 20
Cert-C Context 26
Cert-C core functionality 20
Cert-C CRL Revocation Status service

provider 239
Cert-C CryptoAPI Database service

provider 208
Cert-C Default Database service

provider 207
Cert-C Features 21
Cert-C Initialization 26
Cert-C In-Memory Database service

provider 207, 210
Cert-C LDAP Database service provider 207
Cert-C Model 64
Cert-C Objects 60
Cert-C PKCS #11 Database service

provider 208
Cert-C SCEP Database service provider 208
Cert-C Service Providers 20, 85
Cert-C SPI 20
Cert-C Utilities 20
certc.h 67
CERTC_CTX 169, 210
certc_reference.html 50
CERTC_ROOT 52
certificate authority 21
Certificate Authority (CA) 37
certificate chain 189, 228
Certificate Chaining 38
Certificate Confirmation Request Object 152
Certificate Confirmation Response

Object 154
certificate extensions 254
Certificate Management Protocols 45
certificate path 190
Certificate Path Processing service

provider 88
certificate policies 195
Certificate request 45
certificate response 147
certificate revocation 21, 187
Certificate Revocation List (CRL) 39
certificate revocation response 147
Certificate Revocation Status service

providers 88
Certification Request Syntax Standard 319
certpath.h 195
CFLAGS_OPTIM 53
Character Sets 47
Cisco Simple Certificate Enrollment
3 2 6 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Protocol 44
Clean Up 66
Cleanup 68
CMP 21, 45
CMP 2 137
CMP PKI service provider 89, 138
CMP1 137
cmpreq.c 142
CMS 45
CN_RESOURCE_LOCATOR 261
CodeBase 54
Compile-Time and Link-Time Strings 53
context management component 25
CRITICAL 259
critical.c 259
criticality 283
CRL 21, 39, 191, 197, 228
CRL distribution points 21
CRL entry extensions 254
CRL extensions 254
CRL Revocation Status service provider 88
crl.c 231, 237, 243, 313
crl.h 313
CRL_ENTRIES_INFO 243, 247, 251
CRL_ENTRIES_OBJ 61, 227, 234, 241, 243,

247, 250
CRL_ENTRIES_OBJ Functions 241
CRL_ENTRY_EXTENSIONS_OBJ 254, 257
CRL_ENTRY_INFO 244, 245, 254
CRL_EXTENSIONS_OBJ 254, 257
CRL_FIELDS 231, 232, 233, 238, 239, 241, 243,

247, 250, 254
CRL_OBJ 61, 196, 211, 227, 229, 241, 243, 254
CRL_OBJ Functions 229
CRL_STATUS_INIT_PARAMS 194
CRL_VERSION_2 229
crlEntries 241
CRS 21, 45
CRS PKI service provider 88
CryptoAPI 87, 208
CryptoAPI Database service provider 87
Crypto-C API 20, 69
Crypto-C Libraries 54
Cryptographic Message Synax Standard 319
Cryptographic Message Syntax 45
Cryptographic Message Syntax Standard 43
Cryptographic Token Information Format

Standard 319
Cryptographic Token Interface Standard 44,

319
Cryptoki 44

D
d4all.h 55

Data 43
Database Service and Iterator Functions 202
database service providers 86, 207
DB_FUNCS 207
DB_ITERATOR 212
dchooser.c 313
dchooser.h 313
Default Cryptographic service provider 87
Default Database service provider 86
DEFAULT_CERT_REQUEST_VERSION 297,

298
DEFAULT_DB_PARAMS 207
DEFAULT_PKCS10_VERSION 298
define an extension 279
Demo

Return Values 68
demo.c 313
demo.h 313
Deprecated Functions and Structures 70
DER 46
Destructor 92, 271, 272, 275, 278
Diffie-Hellman Key-Agreement

Standard 319
Digested Data 43
Digital Certificates 34
Digital Envelopes 36
Digital Signatures 33
DisplayAttributeValue 222
DisplayCertInfo 184
DisplayCRLEntryInfo 251
DisplayCRLInfo 239
Distinguished Encoding Rules 46
distinguished name 101
dmenu.c 313
dmenu.h 313
DN 41, 43, 101
Domain Name 41
draft-ietf-pkix-cmp-transport-protocols-04

320
draft-ietf-pkix-rfc2510bis-05 137, 320
draft-ietf-pkix-rfc2510bis-06 21, 89
draft-ietf-pkix-rfc2511bis-03 320
draft-ietf-pkix-rfc2511bis-04 21, 89
DSA 88
dtime.c 313
dtime.h 313
dutil.c 313
dutil.h 313

E
E_INVALID_CRITICALITY 284
E_INVALID_SIGNATURE 304
E_UNKNOWN_CRITICAL_EXTENSION

283
I n d e x 32 7

Elliptic Curve Cryptography Standard 319
Encrypted Data 43
Enveloped Data 43
error4hook() 55
ET_ISSUER_ALTNAME 258, 281
ET_ISSUER_ALTNAME_LEN 258
ET_POLICY_CONSTRAINTS 298
ET_POLICY_CONSTRAINTS_36 298
ET_POLICY_CONSTRAINTS_36_LEN 298
ET_POLICY_CONSTRAINTS_LEN 298
ET_UNKNOWN_TYPE 284
ET_UNKNOWN_TYPE_LEN 284
exten.c 257, 313
exten.h 313
Extension Fields 35
extension type 283
EXTENSION_HANDLER 259, 270
EXTENSION_INFO 224
EXTENSION_TYPE_INFO 254, 279, 280
EXTENSIONS_OBJ 61, 179, 223, 229, 234, 254,

257, 262, 268
EXTENSIONS_OBJ Functions 255
extnhlp.c 225
extnhlp.h 225
extnutil.c 226
extnutil.h 226
ExtractCertPublicKey 185

F
fulfill.c 314
fulfill.h 314

G
genreq.c 314
genreq.h 314
GetCAInfoFromStorage 178, 233
GetCAPrivateKeyObject 235
GetEncodedValue 271, 272, 275, 276

H
Header Files 67

I
IETF 42
imdbcert.c 209
In-Memory Database service provider 86
inoutcl.c 314
inoutcl.h 314
Installing Cert-C 51
Intel Hardware Random Number

Generator 87
internal Cert-C library 25
Internal static libraries 24

International Telecommunications Union 41
Internet Engineering Task Force 42
Internet PKI Certificate Request Syntax 45
Internet X.509 Public Key Infrastructure

Certificate and CRL Profile 320
ITU 318
ITU-T 41

K
Key Archival 45
key archival 21, 142
key object 62
Key update 45
key update 21
Key Update Request Object 155
key update response 147
Key Update Response Object 156
key usage 187
KEY_USAGE 272
KI_PKCS_RSAPrivateBER 293, 294
KI_RSAPublicBER 289, 293

L
Layman's Guide to a Subset of ASN.1, BER,

and DER 318
LDAP 207
LDAP Database service provider 87
LDAP Usage 55
ldap.c 209
libc.a 56
libcertcsp.a 55
list object 91
LIST_OBJ 61, 91, 195, 212, 276, 278
LIST_OBJ Functions 93
LIST_OBJ_ENTRY_HANDLER 92, 94

M
Makefiles 52
Memory Management 66
MEMORY_DB_PARAMS 210
Message Formats 43
Microsoft CryptoAPI services 87
mscapicert.c 209
mscapiroots.c 209
myprint.c 314
myprint.h 314

N
NAME_OBJ 61, 101, 171, 216
NAME_OBJ Function 103
New Features 23
NON_CRITICAL 259, 284
nsldap32v30.dll 56
3 2 8 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

O
ObtainCAPublicKey 182, 184
OCSP 21, 44, 191, 197, 228
OCSP Revocation Status service provider 88
OCSP_REQUEST_EXTENSIONS_OBJ 254,

257
OCSP_SINGLE_EXTENSIONS_OBJ 254, 257
Online Certificate Status Protocol 44
Open Systems Interconnection 46
OSI 46

P
PA_IGNORE_POLICY 194, 195
PA_PKIX 194, 196
PA_PKIX2 191, 194
PA_X509_V1 196
path-processing algorithm 194
PBUnprotectPrivateKey 294
Personal Information Exchange Syntax

Standard 44, 319
PF_VALIDATION_TIME_NOW 195
PKCS 42, 319
PKCS #1 43
PKCS #10 43
PKCS #10 message 101
PKCS #11 44, 87, 208
PKCS #11 Database service provider 87
PKCS #12 44
PKCS #5 43
PKCS #5 v2.0 password-based

encryption 207
PKCS #7 43, 101
PKCS #8 33, 43, 319
PKCS #8 Private-Key Syntax 43
PKCS #9 36, 43, 264
PKCS Messaging 42
PKCS10_FIELDS 174, 176, 266, 267, 298
PKCS10_OBJ 61, 175, 267, 297
PKCS10_VERSION_1 297
pkcs11db.c 209
PKCS12_BAG 82
pkcs-9-at-extensionRequest 264
PKI message-protection algorithms 140
PKI service providers 88
PKI_CERT_CONF_REQ_OBJ 61, 137, 152
PKI_CERT_CONF_REQ_OBJ Functions 152
PKI_CERT_CONF_RESP_OBJ 61, 154
PKI_CERT_CONF_RESP_OBJ Functions 154
PKI_CERT_IDENTIFIER 147
PKI_CERT_REQ_OBJ 61, 70, 71, 137, 141, 149
PKI_CERT_REQ_OBJ Functions 149
PKI_CERT_RESP_OBJ 61, 70, 71, 149, 150
PKI_CERT_RESP_OBJ Functions 151
PKI_CERT_TEMPLATE_OBJ 62, 142, 162

PKI_CERT_TEMPLATE_OBJ Functions 162
PKI_CERTREQ_FIELDS 71
PKI_CERTRESP_FIELDS 71
PKI_CMP_INIT_METHOD_STRUCT 138
PKI_CMP_PROFILE_KCA6 138
PKI_CMP_SP_INIT_PARAMS 138
PKI_ENTITY_GENERALNAME_KEYID 140
PKI_ENTITY_ID 140
PKI_ERROR_MESSAGE_OBJ 62, 160
PKI_ERROR_MESSAGE_OBJ Functions 160
PKI_ERROR_MSG_OBJ 147
PKI_KEY_UPDATE_REQ_OBJ 62, 137, 141,

155
PKI_KEY_UPDATE_REQ_OBJ

Functions 155
PKI_KEY_UPDATE_RESP_OBJ 62, 156
PKI_KEY_UPDATE_RESP_OBJ

Functions 156
PKI_MSG_FIELDS 71
PKI_MSG_OBJ 62, 70, 71, 149
PKI_MSG_PROTECTION_ENVELOPE 140
PKI_MSG_PROTECTION_ENVELOPE_

THEN_SIGN 140
PKI_MSG_PROTECTION_NONE 140
PKI_MSG_PROTECTION_PBM 140
PKI_MSG_PROTECTION_SIGN 140
PKI_MSG_PROTECTION_SIGN_THEN_

ENVELOPE 140
PKI_MSGTYPE_CERT_CONF_REQ 139, 145
PKI_MSGTYPE_CERT_REQ 139
PKI_MSGTYPE_CERT_RESP 145
PKI_MSGTYPE_ERROR_MSG 145
PKI_MSGTYPE_KEY_UPDATE_REQ 139
PKI_MSGTYPE_KEY_UPDATE_RESP 145
PKI_MSGTYPE_REVOKE_REQ 139
PKI_MSGTYPE_REVOKE_RESP 145
PKI_POP_GEN_INFO 143
PKI_PROTECT_INFO 140, 144
PKI_RECIPIENT 71
PKI_RECIPIENT_INFO 71
PKI_REVOKE_REQ_OBJ 62, 137, 141, 157
PKI_REVOKE_REQ_OBJ Functions 157
PKI_REVOKE_RESP_OBJ 62, 158
PKI_REVOKE_RESP_OBJ Functions 159
PKI_SENDER_INFO 140
PKI_SP_DATA_HANDLER 83
PKI_STATUS_GRANTED 146
PKI_STATUS_GRANTED_MODS 146
PKI_STATUS_INFO_OBJ 62, 146, 150, 165
PKI_STATUS_INFO_OBJ Functions 165
PKI_STATUS_REJECTED 146
PKI_STATUS_REVOCATION 146
PKI_STATUS_WAITING 146
PKI_STATUS_WARNING_KEY_UPDATE

146
I n d e x 32 9

PKI_STATUS_WARNING_REVOCATION
146

pkikumsg.h 155, 156
PKIX 320
PKIX Profiles 42
pkixpath.c 191
PLATFORM 52
policy 187
policy mapping 21, 191
POLICY_CONSTRAINTS 298
POLICY_CONSTRAINTS_36 298
policy-mapping 187
POP 143
Printable String 48
Private-key Information Syntax Standard 43
Private-Key Syntax 319
programming standards 66
Protocol Considerations 41
Public Key Cryptography 31
Public Keypairs 32
Public/Private Key Information

Importing 44
Public-Key Cryptography Standards 42
Putting extensions in an attributes object 264

R
RDN 41, 102
Reading extensions in an attributes

object 267
RecallCAPublicKey 239
RecallPBKeyData 294
Registering a Surrender Context 84
Relative Distinguished Name 102
relative distinguished name 41
Retrieve Certificate Functions 204
Retrieve CRL Functions 205
Retrieve Private Key Functions 205
Retrieving Extensions Object

Information 223
Revocation request 45
revocation status 190, 191
Revoke Request Object 157, 158
RFC 2459 21, 42, 88, 194, 196, 275, 320
RFC 2510 21, 89, 137
RFC 2511 21, 89
RFC 3280 21, 42, 88, 194
rfc2560.txt 320
RFCs 42, 317
Routine Names 68, 69
RSA 88
RSA Encryption Standard 319
RSA Security SecurCare 17
RSA Security technical support 17
RSA_ 68

RSA_WriteDataToFile 181, 262
rsadbcert.c 209
rsadbm.c 209

S
S_InitializeCMP 138
S_InitializeMemoryDB 210
S4OFF_REPORT 55
S4OFF_TRAN 55
S4UNIX 55
S4WIN32 55
SA_SHA1_WITH_RSA_ENCRYPTION 177
saltname.c 285
Sample Code Conventions 68
Sample Programs 57
SaveCRLDER 236
SCEP 21, 44, 208
SCEP Database service provider 87
SCEP PKI service provider 89
scepdb.c 209
Secret-Key Cryptography 31
self-signed 35, 187
SERVICE 28, 74, 144, 195, 202, 210, 212
Service provider interface 22, 24
service provider order 28
service provider type order 27
Service Providers 24, 26
SERVICE_FUNCS 28
SERVICE_HANDLER 26, 28, 138, 193
SERVICE_ORDER_FIRST 28
SERVICE_ORDER_LAST 28
Service-Provider Functions 28
Service-Provider Information 28
Service-Provider Initialization 27
Service-Provider Registering 28
service-provider type 27
SetEncodedValue 271, 272, 276, 277, 278
Signed Data 43
Signed-Data message 101
Simple Certificate Enrollment Protocol 21
simpleio.c 314
simpleio.h 314
Solaris 56
SPI 22, 24
SPT_CRYPTO 28
SPT_SURRENDER 28
status 68
Status Log service provider 86
Store Certificate Functions 203
Store CRL Functions 203
Store Private Key Functions 203
Stream service provider 86
surrende.c 314
surrende.h 314
3 3 0 R S A B S A F E C e r t - C B a s i c D e v e l o p e r ’s G u i d e

Surrender 84
Surrender Context 84
System service provider 85

T
T_free 273, 275, 276
T_malloc 273, 276
T_memcopy 273
T_memcpy 276
T_memset 66, 140, 273
T_time 244
Text Surrender service provider 85
Third-Party Source Code 54
Transport Protocols for CMP 320
TRANSPORT_INFO 138
Trusted Root 39
trusted root 188
trusted-root 187

U
UNICODE 48
UNIX Install 51
Unknown Critical Extension 283
unknown extension 283
UsePublicKey 186
user-defined extension 270
userextn.c 259, 315
userextn.h 315
UTF-8 48, 321
Utility Routines 58

V
validate.c 191
Verify a Certificate or CRL Functions 190
Verifying a Signature 200
VeriSign CRS Profile Specification 21
VT_BMP_STRING 47
VT_GENERAL_STRING 47
VT_GRAPHIC_STRING 47
VT_IA5_STRING 47
VT_ISO646_STRING 47
VT_NUMERIC_STRING 47
VT_PRINTABLE_STRING 47
VT_T61_STRING 47
VT_TELETEX_STRING 47
VT_UNIVERSAL_STRING 47
VT_UTF8_STRING 47
VT_VIDEOTEX_STRING 48
VT_VISIBLE_STRING 48

W
Win32 56

X
X.500 41
X.500 directory 41
X.509 318

v3 CRL entry extensions 61, 241
X.509 certificates 41
X.509 v3 253
X.680 46, 318
X.681 46
X.690 46, 318
3 3 1

3 3 2

	RSA BSAFE® Cert-C Basic Developer’s Guide
	Contents
	Preface
	How This Book Is Organized
	Cert-C Documentation Redesign
	Cert-C Documentation Map
	Core Documentation
	Additional Documentation

	How to Contact RSA Security
	RSA Security Web Site
	Getting Support and Service
	SecurCare® Online
	Technical Support Information

	Introduction
	What Is RSA BSAFE Cert-C?
	The Cert-C Components

	Cert-C Features
	New Features in Cert-C 2.7
	Cert-C Architecture
	Your Application
	Cert-C API
	Cert-C Context
	Cert-C Initialization

	Cert-C Service Providers
	Service-Provider Initialization
	Service-Provider Registering
	Service-Provider Unregistering
	Service-Provider Binding
	Service Provider Unbinding
	Surrender Context

	Cert-C SPI

	RSA Security Concepts
	Secret-Key Cryptography
	Public-Key Cryptography
	Key Management
	Digital Signatures
	Digital Certificates
	Extension Fields
	CRL Distribution Points

	Attribute Fields
	Digital Envelopes
	Certificate Authority
	Certificate Chaining
	Push Model Versus Pull Model

	Trusted Root
	Certificate Revocation List
	Protocol Considerations
	What Are the X.509 Standards?
	PKIX Profiles
	PKCS Messaging
	PKCS #7 and PKCS #10 Message Formats
	PKCS #8 Private-Key Syntax
	PKCS #11 Cryptographic Token Interface
	PKCS #12 Public/Private-Key Importing and Exporting
	OCSP Certificate Status
	SCEP Certificate Request
	CRS Certificate Request
	CMP Certificate Management
	ASN.1 BER and DER Encoding
	Character Sets

	Cert-C Setup
	Cert-C CD-ROM Contents
	Installing Cert-C
	Compatibility with BCERT 1.0x
	Customizing the UNIX Install Location
	UNIX Platform-Specific Build Strings

	Using the Crypto-C Libraries
	Third-Party Source Code
	CodeBase
	LDAP Usage

	Building and Deploying Cert-C
	Win32
	UNIX and GNU-Linux
	Solaris

	Sample Programs
	Building Samples on Win32
	Utility Routines

	Getting Started
	Cert-C Objects
	Calling the Cert-C API
	Cert-C Model
	Producing Information
	Reading Information

	Cert-C Programming Standards
	Memory Management
	Cert-C Context
	Clean Up
	Header Files

	Sample Code Conventions
	Crypto-C API
	Deprecated Functions and Structures

	Cert-C Context and Services
	Cert-C Handles
	Using the CERTC_CTX and SERVICE_HANDLER Handles
	Initializing the Cert-C Context
	Registering a Service Provider After Cert-C Initialization
	Unregistering a Service Provider

	Using the SERVICE Handle
	Binding a Service
	Binding More Than One Service
	Unbinding a Service

	Using the Database Iterator Handle
	Using the STREAM Handle
	Using the Extension Handler
	Using the List Object Entry Handler

	Cert-C Services
	Surrender Context
	Registering a Surrender Context

	Cert-C Service Providers
	System
	Text Surrender
	Status Log
	Stream
	Database
	Cryptographic
	Certificate Path Processing
	Certificate Revocation Status
	PKI Certificate Management

	Using the List Object
	List Object
	List-Object Entry Handler
	List-Object Functions

	Creating and Enumerating a List of Objects
	Creating a List of Certificates
	Enumerating a List of Objects

	Creating and Enumerating a List of Structures
	Creating a List of ITEMs
	Enumerating a List of ITEMs

	Creating and Enumerating a List of User-Defined Elements

	Using the Name and Attributes Objects
	Name Object
	Name-Object Functions
	AVA-List Functions
	Attribute Types and Constraints

	Creating a Name Object
	Attributes Object
	Attributes-Object Functions
	Attribute Types and Constraints

	Creating an Attributes Object

	Creating a Certificate Request
	PKCS #10 Certificate Request
	PKCS #10 Object
	PKCS #10-Object Functions

	Creating a PKCS #10 Certificate Request

	PKI Certificate Request Message

	Creating a PKI Message
	PKI Message Object
	Deprecated PKI Messaging APIs and Structures
	PKI Message Object Functions

	Creating a PKI Request Message
	PKI Certificate-Request Object
	PKI Certificate-Request Object Functions

	PKI Certificate-Response Object
	PKI Certificate-Response Object Functions

	PKI Certificate-Confirmation Request Object
	PKI Certificate-Confirmation Request Object Functions

	PKI Certificate-Confirmation Response Object
	PKI Certificate-Confirmation Response Object Functions

	PKI Key-Update Request Object
	PKI Key-Update Request Object Functions

	PKI Key-Update Response Object
	PKI Key-Update Response Object Functions

	PKI Revocation Request Object
	PKI Revocation Request Object Functions

	PKI Revocation Response Object
	PKI Revocation Response Object Functions

	PKI Error-Message Object
	PKI Error-Message Object Functions

	Certificate-Template Object
	PKI Certificate-Template Object Functions

	PKI Status-Information Object
	PKI Status-Information Object Functions

	Creating an X.509 Certificate
	Certificate Object
	Certificate-Object Functions

	Creating a Certificate Object
	Fulfilling the PKCS #10 Certificate Request
	Manipulating Certificate Information

	Verifying Certificates and CRLs
	Trusted Root
	Certificate Chaining
	Verify a Certificate or CRL Functions
	Service Providers

	Validating a Certificate Path
	Verifying a Signature
	Verifying a Signature on a Certificate
	Verifying a Signature on a CRL

	Storing and Retrieving Certificates, CRLs, and Private Keys
	Cert-C Database APIs
	Cert-C Database Service Providers
	Storing and Retrieving Certificates, CRLs, and Private Keys
	Storing a Certificate, CRL, or Private Key
	Retrieving a Certificate, CRL, or Private Key

	Retrieving Certificate Information
	Retrieving Name-Object Information
	Retrieving Attributes-Object Information
	Retrieving Extensions-Object Information

	CRL and CRL Entries
	CRL Object
	CRL-Object Functions

	Creating a CRL Object
	Reading a CRL Object
	CRL Entries Object
	CRL-Entries Object Functions

	Adding a CRL Entry to a CRL Object
	Deleting a CRL Entry from a CRL Object
	Reading a CRL-Entries Object

	Extensions
	X.509 v3 Certificate Extensions
	Extensions Object
	Extensions-Object Functions

	Creating an Extensions Object
	Extensions Information in an Attributes Object
	Putting Extensions in an Attributes Object
	Reading Extensions in an Attributes Object

	User-Defined Extensions
	Building an Extension Handler
	Writing the AllocAndCopy Routine
	Writing the Destructor Routine
	Writing the GetEncodedValue Routine
	Writing the SetEncodedValue Routine

	Registering a User-Defined Extension
	Building a Cert-C Context to Register a User-Defined Extension
	Registering a User-Defined Extension

	Using a User-Defined Extension

	The Unknown Extension
	The Unknown Critical Extension

	Overriding the Extension Handler

	Using BSAFE Crypto-C
	Crypto-C Model
	Key Object
	Generating an RSA Key Pair
	Getting Key Information Out of a Key Object
	Setting a Key Object

	BCERT Compatibility
	BCERT Backward Compatibility
	API Modifications/Updates

	An Example: bcdemo
	User's Guide for bcdemo
	Introduction
	Running the Demo

	Programmer's Guide for bcdemo

	References
	ITU Recommendations
	PKCS
	PKIX
	UTF-8
	SCEP

	Index

